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Abstract. We prove the basic Ar(�)-weighted imbedding inequalities for A-harmonic tensors.
These results can be used to estimate the integrals for A-harmonic tensors and to study the inte-
grability of A-harmonic tensors and the properties of the homotopy operator T : C∞(D,∧l ) →
C∞(D,∧l−1).
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1. Introduction

Let e1, e2, . . . , en denote the standard unit basis of Rn, n � 2, and R = R1. Assume
that ∧l = ∧l(Rn) is the linear space of l-vectors, spanned by the exterior products
eI = ei1 ∧ ei2 ∧ · · · eil , corresponding to all ordered l-tuples I = (i1, i2, . . . , il),
1 � i1 < i2 < · · · < il � n, l = 0, 1, . . . , n. The Grassman algebra ∧ = ⊕∧l

is a graded algebra with respect to the exterior products. For α = ∑
αIeI ∈ ∧

and β = ∑
βIeI ∈ ∧, the inner product in ∧ is given by 〈α, β〉 = ∑

αIβI with
summation over all l-tuples I = (i1, i2, . . . , il) and all integers l = 0, 1, . . . , n. We
define the Hodge star operator � : ∧ → ∧ by the rule �1 = e1 ∧ e2 ∧ · · · ∧ en and
α ∧ �β = β ∧ �α = 〈α, β〉(�1) for all α, β ∈ ∧. The norm of α ∈ ∧ is given by
the formula |a|2 = 〈α, α〉 = �(α ∧ �α) ∈ ∧0 = R. The Hodge star is an isometric
isomorphism on ∧ with � : ∧l → ∧n−l and � � (−1)l(n−l): ∧l → ∧l .

We always assume that � is a bounded domain in Rn throughout this paper.
Balls are denoted by B and σB is the ball with the same center as B and with
diam(σB) = σdiam(B). We do not distinguish the balls from cubes throughout
this paper. The n-dimensional Lebesgue measure of a set E ⊆ Rn is denoted by
|E|. We call w a weight if w ∈ L1

loc(R
n) and w > 0 a.e. For 0 < p < ∞, we

denote the weighted Lp-norm of a measurable function f over E by

‖f ‖p,E,w =
(∫

E

|f (x)|pw(x) dx

)1/p

.
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A differential l-form w on � is a de Rham current (see [9, Chapter III]) on
� with values in ∧l(R). We use D′(�,∧l) to denote the space of all differential
l-forms and Lp(�,∧l) to denote the l-forms w(x) = ∑

I wI (x) dxI = ∑
wi1i2...il

(x) dxi1 ∧ dxi2 ∧ · · · ∧ dxil with wI ∈ Lp(�,R) for all ordered l-tuples I . Thus
Lp(�,∧l) is a Banach space with norm

‖w‖p,� =
(∫

�

|w(x)|p dx

)1/p

=
(∫

�

(∑
I

|wI(x)|2
)p/2

dx

)1/p

.

Similarly, W 1
p(�,∧l) are those differential l-forms on � whose coefficients are in

W 1
p(�,R). The notations W 1

p,loc(�,R) and W 1
p,loc(�,∧l) are self-explanatory. We

denote the exterior derivative by d : D′(�,∧l) → D′(�,∧l+1) for l = 0, 1, . . . , n.
Its formal adjoint operator d� : D′(�,∧l+1) → D′(�,∧l) is given by d� =
(−1)nl+1 � d� on D′(�,∧l+1), l = 0, 1, . . . , n.

T. Iwaniec and A. Lutoborski prove the following result in [7]: Let D ⊂ Rn

be a bounded, convex domain. To each y ∈ D there corresponds a linear operator
Ky :C∞(D,∧l) → C∞(D,∧l−1) defined by

(Kyw)(x; ξ1, . . . , ξl) =
∫ 1

0
t l−1w(tx + y − ty; x − y, ξ1, . . . , ξl−1) dt

are the decomposition

w = d(Kyw) + Ky(dw).

Then, T. Iwaniec and A. Lutoborski introduce a homotopy operator T : C∞(D,∧l)

→ C∞(D,∧l−1) by averaging Ky over all points y in D

Tw =
∫
D

ϕ(y)Kyw dy, (1.1)

where ϕ ∈ C∞
0 (D) is normalized by

∫
D
ϕ(y) dy = 1, and prove the following

imbedding inequalities for differential forms.

THEOREM A. Let u ∈ Ls
loc(�,∧l), l = 1, 2, . . . , n, 1 < s < ∞, be a differential

form in a bounded domain � ⊂ Rn. Assume that F is any convex subset such that
supp ϕ ⊂ F ⊂ �, where ϕ from C∞

0 (�) is normalized by
∫
�
ϕ(y) dy = 1. Then

(i) ‖T u‖s,F � C diam(F )‖u‖s,F ;
(ii) ‖d(T u)‖s,F � ‖u‖s,F + C diam(F )‖du‖s,F ,

where C = 2nσn−1ν(�), σn−1 denotes the surface area of the unit sphere in Rn and

ν(�) = (diam(�))n+1∫
�

dist(y, ∂�) dy
.
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The imbedding inequalities have been playing important roles in developing the Lp

theory of differential forms, see [7]. In this paper, we prove the Ar(�)-weighted
imbedding inequalities for A-harmonic tensors.

Many interesting results (see [1–4, 7, 8]) have been established in the study of
the p-harmonic equation

d�(|du|p−2du) = 0

and the A-harmonic equation

d�A(x, dw) = 0 (1.2)

for differential forms, where A :� × ∧l(Rn) → ∧l(Rn) satisfies the following
conditions:

|A(x, ξ)| � a|ξ |p−1 and 〈A(x, ξ), ξ 〉 � |ξ |p (1.3)

for almost every x ∈ � and all ξ ∈ ∧l(Rn). Here a > 0 is a constant and 1 < p

< ∞ is a fixed exponent associated with (1.2). A solution to (1.2) is an element of
the Sobolev space W 1

p,loc(�,∧l−1) such that
∫
�

〈A(x, dw), dϕ〉 = 0

for all ϕ ∈ W 1
p(�,∧l−1) with compact support.

DEFINITION 1.4. We call u an A-harmonic tensor in � if u satisfies the
A-harmonic equation (1.2) in �.

A differential l-form u ∈ D′(�,∧l) is called a closed form if du = 0 in �.
Similarly, a differential (l + 1)-form v ∈ D′(�,∧l+1) is called a coclosed form
if d�v = 0. Clearly, the A-harmonic equation is not affected by adding a closed
form to w. Therefore, any type of estimates about u must be modulo a closed form.

2. Local Weighted Imbedding Inequalities

DEFINITION 2.1. A weight w(x) is called an Ar -weight for some r > 1 in a
domain �, write w ∈ Ar(�), if w(x) > 0 a.e., and

supp
B

(
1

|B|
∫
B

w dx

)(
1

|B|
∫
B

(
1

w

)1/(r−1)

dx

)(r−1)

< ∞ (2.2)

for any ball B ⊂ �.

See [5] and [6] for properties of Ar(�)-weights. We will need the following gen-
eralized Hölder inequality.
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LEMMA 2.3. Let 0 < α < ∞, 0 < β < ∞ and s−1 = α−1 + β−1. If f and g are
measurable functions on Rn, then

‖fg‖s,� � ‖f ‖α,� · ‖g‖β,�
for any � ⊂ Rn.

We also need the following lemma [5].

LEMMA 2.4. If w ∈ Ar(�), then there exist constants β > 1 and C, independent
of w, such that

‖w‖β,B � C|B|(1−β)/β‖w‖1,B

for all balls B ⊂ Rn.

The following weak reverse Hölder inequality appears in [8].

LEMMA 2.5. Let u be an A-harmonic tensor in �, ρ > 1 and 0 < s, t < ∞.
Then there exists a constant C, independent of u, such that

‖u‖s,B � C|B|(t−s)/st‖u‖t,ρB
for all balls or cubes B with ρB ⊂ �.

Now we prove the following weighted imbedding inequality for A-harmonic ten-
sors and the homotopy operator T .

THEOREM 2.6. Let u ∈ Ls
loc(�,∧l), l = 1, 2, . . . , n, 1 < s < ∞, be an

A-harmonic tensor in a bounded domain � ⊂ Rn and T : C∞(�,∧l) →
C∞(�,∧l−1) be a homotopy operator defined in (1.1). Assume that ρ > 1 and
w ∈ Ar(�) for some r > 1. Then, for any ball B such that supp ϕ ⊂ B ⊂ ρB ⊂ �,
where ϕ from C∞

0 (B) is normalized by
∫
B
ϕ(y) dy = 1, there exists a constant C,

independent of u, such that
(∫

B

|T u|swα dx

)1/s

� C diam(B)

(∫
ρB

|u|swα dx

)1/s

(2.7)

for any real number α with 0 < α � 1.
Proof. We first show that (2.7) holds for 0 < α < 1. Let t = s/(1 − α). Using

Lemma 2.3, we have(∫
B

|T u|swα dx

)1/s

=
(∫

B

(|T u|wα/s
)s

dx

)1/s

� ‖T u‖t,B
(∫

B

wtα/(t−s) dx

)(t−s)/st

= ‖T u‖t,B
(∫

B

w dx

)α/s

. (2.8)
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By Theorem A, we have

‖T u‖t,B � C1 diam(B)‖u‖t,B . (2.9)

Choose m = s/(1 + α(r − 1)), then m < s. Substituting (2.9) into (2.8) and using
Lemma 2.5, we have(∫

B

|T u|swα dx

)1/s

� C1 diam(B)‖u‖t,B
(∫

B

w dx

)α/s

� C2 diam(B)|B|(m−t )/mt‖u‖m,ρB

(∫
B

w dx

)α/s

. (2.10)

Using Lemma 2.3 with 1/m = 1/s + (s − m)/sm, we obtain

‖u‖m,ρB =
(∫

ρB

|u|m dx

)1/m

=
(∫

ρB

(|u|wα/sw−α/s
)m

dx

)1/m

�
(∫

ρB

|u|swα dx

)1/s(∫
ρB

(
1

w

)1/(r−1)

dx

)α(r−1)/s

(2.11)

for all balls B with ρB ⊂ �. Substituting (2.11) into (2.10), we obtain(∫
B

|T u|swα dx

)1/s

� C2 diam(B)|B|(m−t )/mt

(∫
ρB

|u|swα dx

)1/s

×

×
(∫

B

w dx

)α/s(∫
ρB

(
1

w

)1/(r−1)

dx

)α(r−1)/s

. (2.12)

Now w ∈ Ar(�) yields

‖w‖α/s1,B · ‖1/w‖α/s1/(r−1),ρB �
((∫

ρB

w dx

)(∫
ρB

(1/w)1/(r−1) dx

)r−1)α/s

=
(

|ρB|r
(

1

|ρB|
∫
ρB

w dx

)
×

×
(

1

|ρB|
∫
ρB

(
1

w

)1/(r−1)

dx

)r−1)α/s

� C3|B|αr/s. (2.13)

Combining (2.13) and (2.12), we find that(∫
B

|T u|swα dx

)1/s

� C4 diam(B)

(∫
ρB

|u|swα dx

)1/s

(2.14)
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for all balls B with ρB ⊂ �. We have proved that (2.7) is true if 0 < α < 1.
Next, we prove (2.7) is true for α = 1, that is, we need to show that

‖T u‖s,B,w � C diam(B)‖u‖s,ρB,w. (2.15)

By Lemma 2.4, there exist constants β > 1 and C5 > 0, such that

‖w‖β,B � C5|B|(1−β)/β‖w‖1,B (2.16)

for any cube or any ball B ⊂ Rn. Choose t = sβ/(β − 1), then 1 < s < t and
β = t/(t − s). Since 1/s = 1/t + (t − s)/st , by Lemma 2.3, Theorem A and
(2.16), we have

(∫
B

|T u|sw dx

)1/s

=
(∫

B

(|T u|w1/s)s dx

)1/s

�
(∫

B

|T u|t dx

)1/t(∫
B

(w1/s)st/(t−s) dx

)(t−s)/st

� C6‖T u‖t,B · ‖w‖1/s
β,B

� C6 diam(B)‖u‖t,B · ‖w‖1/s
β,B

� C7 diam(B)|B|(1−β)/βs‖w‖1/s
1,B · ‖u‖t,B

� C7 diam(B)|B|−1/t‖w‖1/s
1,B · ‖u‖t,B. (2.17)

Let m = s/r. From Lemma 2.4, we find that

‖u‖t,B � C8|B|(m−t )/mt‖u‖m,ρB . (2.18)

Lemma 2.3 yields

‖u‖m,ρB =
(∫

ρB

(|u|w1/sw−1/s)m dx

)1/m

�
(∫

ρB

|u|sw dx

)1/s(∫
ρB

(
1

w

)1/(r−1)

dx

)(r−1)/s

(2.19)

for all balls B with ρB ⊂ �. Note that w ∈ Ar(�). Then

‖w‖1/s
1,B · ‖1/w‖1/s

1/(r−1),ρB �
((∫

ρB

w dx

)(∫
ρB

(1/w)1/(r−1) dx

)r−1)1/s

=
(

|ρB|r
(

1

|ρB|
∫
ρB

w dx

)
×

×
(

1

|ρB|
∫
ρB

(
1

w

)1/(r−1)

dx

)r−1)1/s

� C9|B|r/s. (2.20)
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Combining (2.17), (2.18), (2.19) and (2.20), we have

‖T u‖s,B,w � C10 diam(B)|B|−1/t‖w‖1/s
1,B |B|(m−t )/mt‖u‖m,ρB

� C10 diam(B)|B|−1/m‖w‖1/s
1,B · ‖1/w‖1/s

1/(r−1),ρB‖u‖s,ρB,w
� C11 diam(B)‖u‖s,ρB,w

for all balls B with ρB ⊂ �. Hence, (2.15) holds. The proof of Theorem 2.6 is
completed. ✷
THEOREM 2.21. Let ∈ Ls

loc(�,∧l), l = 1, 2, . . . , n, 1 < s < ∞, be an
A-harmonic tensor in a bounded domain � ⊂ Rn such that du ∈ Ls

loc(�,∧l+1)

and T :C∞(�,∧l) → C∞(�,∧l−1) be a homotopy operator defined in (1.1).
Assume that σ > 1 and w ∈ Ar(�) for some r > 1. Then, for any ball B such that
supp ϕ ⊂ B ⊂ �, where ϕ from C∞

0 (B) is normalized by
∫
B
ϕ(y) dy = 1, we have

(∫
B

|d(T u)|swαdx

)1/s

� C|B|(1−α)/s

(∫
σB

|u|swα dx

)1/s

(2.22)

for all balls B with σB ⊂ � and any real number α with 0 < α � 1.
Proof. First, we assume that 0 < α < 1. Let t = s/(1 − α). From Caccioppoli-

type estimate for A-harmonic tensors, we know that there exists a constant C1,
independent of u, such that

‖du‖t,B � C1 diam(B)−1‖u‖t,σB (2.23)

for any A-harmonic tensor u in � and all balls or cubes B with σB ⊂ �, where
σ > 1. Now let m = s/(1+α(r−1)). Using Lemma 2.3, (ii) in Theorem A, (2.23)
and Lemma 2.5, we have(∫

B

|d(T u)|swα dx

)1/s

=
(∫

B

(|d(T u)|wα/s
)s

dx

)1/s

� ‖d(T u)‖t,B
(∫

B

wtα/(t−s) dx

)(t−s)/st

� ‖d(T u)‖t,B
(∫

B

w dx

)α/s

� (‖u‖t,B + C2 diam(B)‖du‖t,B )
(∫

B

w dx

)α/s

� (‖u‖t,B + C3‖u‖t,σB)
(∫

B

w dx

)α/s

� C4‖u‖t,σB
(∫

B

w dx

)α/s

� C5|B|(m−t )/mt‖u‖m,σB

(∫
B

w dx

)α/s

. (2.24)
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Using Lemma 2.3, we obtain

‖u‖m,σB =
(∫

ρB

(|u|wα/sw−α/s)m dx

)1/m

�
(∫

ρB

|u|swα dx

)1/s(∫
ρB

(
1

w

)1/(r−1)

dx

)α(r−1)/s

(2.25)

for all balls B with σB ⊂ �. Substituting (2.25) into (2.24), then using (2.13)
(replacing ρ by σ in (2.13)), we obtain

(∫
B

|d(T u)|swα dx

)1/s

� C6|B|(1−α)/s

(∫
σB

|u|swα dx

)1/s

which ends the proof of Theorem 2.21 for the case 0 < α < 1. For the case α = 1,
the proof is similar to that of Theorem 2.6. ✷
Note that the parameter α in both of Theorem 2.6 and Theorem 2.21 is any real
number with 0 < α � 1. Therefore, we can have different versions of the weighted
imbedding inequality by choosing α to be different values. For example, set t =
1 − α in Theorem 2.6 and write dµ = w(x) dx. Then, inequality (2.7) becomes

(∫
B

|T u|sw−t dµ

)1/s

� C diam(B)

(∫
ρB

|u|sw−t dµ

)1/s

. (2.26)

If we choose α = 1/r in Theorem 2.6, then (2.7) reduces to

(∫
B

|T u|sw1/r dx

)1/s

� C diam(B)

(∫
ρB

|u|sw1/r dx

)1/s

. (2.27)

If we choose α = 1/s in Theorem 2.6, then 0 < α < 1 since 1 < s < ∞. Thus,
(2.7) reduces to the following symmetric version:

(∫
B

|T u|sw1/s dx

)1/s

� C diam(B)

(∫
ρB

|u|sw1/s dx

)1/s

. (2.28)

Finally, if we choose α = 1 in Theorem 2.6, we have the following weighted
imbedding inequality.

‖T u‖s,B,w � C diam(B)‖u‖s,ρB,w. (2.29)

REMARK. Choosing α to be some special values in Theorem 2.21, we shall have
some similar results. For example, selecting α = 1 in Theorem 2.21, we have

‖d(T u)‖s,B,w � C1|B|(1−α)/s‖u‖s,σB,w � C2‖u‖s,σB,w. (2.30)
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3. Global Weighted Imbedding Inequalities

We need the following properties of the Whitney covers appearing in [8] to prove
the global result.

LEMMA 3.1. Each � has a modified Whitney cover of cubes ν = {Qi} such that
⋃
i

Qi = �,

∑
Q∈ν

χ
(
√

5
4 )Q

� Nχ�

for all x ∈ Rn and some N > 1 and if Qi ∩ Qj �= φ, then there exists a cube R

(this cube does not need be a member of ν) in Qi ∩ Qj such that Qi ∪ Qj ⊂ NR.
Moreover if � is δ-John, then there is a distinguished cube Q0 ∈ ν which can be
connected with every cube Q ∈ ν by a chain of cubes Q0, Q1, . . . ,Qk = Q from
ν and such that Q ⊂ ρQi , i = 0, 1, 2, . . . , k, for some ρ = ρ(n, δ).

We prove the following global Ar(�)-weighted imbedding inequality in a
bounded domain � for A-harmonic tensors.

THEOREM 3.2. Let u ∈ Ls(�,∧l), l = 1, 2, . . . , n, 1 < s < ∞, be an
A-harmonic tensor in a bounded domain � ⊂ Rn and T : C∞(�,∧l) →
C∞(�,∧l−1) be a homotopy operator defined by

T w =
∫
�

ϕ(y)Kyw dy.

Assume that w ∈ Ar(�) for some r > 1. Then, there exists a constant C, indepen-
dent of u, such that

(∫
�

|T u|swα dx

)1/s

� C

(∫
�

|u|swα dx

)1/s

, (3.3)

(∫
w

|dT u|swα dx

)1/s

� C

(∫
�

|u|swα dx

)1/s

(3.4)

for any real number α with 0 < α � 1.
Proof. Using (2.7) and Lemma 3.1, we have

(∫
�

|T u|swα dx

)1/s

�
∑
Q∈ν

(
C1 diam(Q)

(∫
ρQ

|u|swα dx

)1/s)

� C1 diam(�)
∑
Q∈ν

(∫
ρQ

|u|swα dx

)1/s
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� C1 diam(�)
∑
Q∈ν

(∫
�

|u|swα dx

)1/s

� C3

(∫
�

|u|swα dx

)1/s

which indicates that (3.3) holds. Using (2.22) and Lemma 3.1, we can prove (3.4)
similarly. The proof of Theorem 3.2 has been completed. ✷
REMARK. Choosing a to be some special values in (3.3) and (3.4), we shall have
some global results similar to the local case.
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