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Abstract. We prove the basic A,(€2)-weighted imbedding inequalities for A-harmonic tensors.
These results can be used to estimate the integrals for A-harmonic tensors and to study the inte-
grability of A-harmonic tensors and the properties of the homotopy operator T: C*°(D, Ay >
C®(D, A7y,
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1. Introduction

Letey, es, ..., e, denote the standard unit basis of R”, n > 2, and R = R!. Assume
that Al = A/(R") is the linear space of [-vectors, spanned by the exterior products
e = e, Nej, N---¢, corresponding to all ordered [-tuples I = (iy, i2,..., 1),
1 <ip<ip<--<ip<n,1l=0,1,...,n. The Grassman algebra A = @/\Z
is a graded algebra with respect to the exterior products. For o« = Y ale; € A
and B = > Ble; € A, the inner product in A is given by (o, B) = > ! p! with
summation over all [-tuples I = (iy, i, ..., i;) and all integers / =0, 1,...,n. We
define the Hodge star operator x : A — A by therule x] = ¢; Aey A--- Ae, and
aAxf =B Axa = (o, B)(x1) for all o, B € A. The norm of & € A is given by
the formula |a|? = (@, o) = *(a A xa) € A® = R. The Hodge star is an isometric
isomorphism on A with * : Al = A" and * x (=1)/*D: Al - AL

We always assume that €2 is a bounded domain in R” throughout this paper.
Balls are denoted by B and o B is the ball with the same center as B and with
diam(o B) = odiam(B). We do not distinguish the balls from cubes throughout
this paper. The n-dimensional Lebesgue measure of a set £ C R” is denoted by
|E|. We call w a weight if w € L! (R") and w > 0 a.e. For0 < p < oo, we

loc

denote the weighted L”-norm of a measurable function f over E by

1/p
1l = (/Elf(x)lpw(x)dx) _
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A differential /[-form w on 2 is a de Rham current (see [9, Chapter III]) on
Q with values in A/(R). We use D'(2, A!) to denote the space of all differential
I-forms and L”($2, A') to denote the /-forms w(x) = Y, w(x)dx; = Y wii, 4
(x)dx;; Adx;, A --- Adx;, with wy € LP(S2, R) for all ordered [-tuples /. Thus
L?(2, AY) is a Banach space with norm

1/p r/2 1/p
lwllp.e = (/ |w(x>|f’dx) = (/ (Z|w1(x>|2) dx) :
Q Q I

Similarly, W[i (2, A!) are those differential /-forms on € whose coefficients are in
W;,(Q, R). The notations W;’IOC(Q, R) and W;JOC(Q, Ab) are self-explanatory. We
denote the exterior derivative by d: D'(Q2, Al) — D'(Q, Al*)forl =0,1,...,n.
Its formal adjoint operator d* : D'(Q, A”™!) — D'(Q, Al) is given by d* =
(—=D)"* % dxon D'(2, AlFH, 1 =0,1,...,n.

T. Iwaniec and A. Lutoborski prove the following result in [7]: Let D C R”
be a bounded, convex domain. To each y € D there corresponds a linear operator
K, :C®(D, A"y - C®(D, A'"") defined by

1
Kyw) (53 €y ooy &) = f AN 4y — 1y x — v, Er, e ) dr
0

are the decomposition
w = d(K,w) + K, (dw).

Then, T. Iwaniec and A. Lutoborski introduce a homotopy operator T: C*®(D, A)
— C>(D, A'"!) by averaging K, over all points y in D

Tw:f e(MK,wdy, (1.1)
D

where ¢ € C3°(D) is normalized by |, p¢(y)dy = 1, and prove the following
imbedding inequalities for differential forms.

THEOREM A. Letu € L; (£2, A, 1=1,2,....,n, 1 <s <00, be a differential

form in a bounded domain Q C R". Assume that F is any convex subset such that
supp ¢ C F C Q, where ¢ from C$°(82) is normalized by fQ ¢(y)dy = 1. Then

@ Tulls,r < Cdiam(F)lulls,r;
(1) [[d(Twlls,r < llulls,r + C diam(F)[[dulls, F,

where C = 2"0,_1v(R2), 0,,_1 denotes the surface area of the unit sphere in R" and

(diam(Q))"+!

V() = [ dist(y, 92 dy
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The imbedding inequalities have been playing important roles in developing the L”
theory of differential forms, see [7]. In this paper, we prove the A, (£2)-weighted
imbedding inequalities for A-harmonic tensors.

Many interesting results (see [1-4, 7, 8]) have been established in the study of
the p-harmonic equation

d*(|dul”*du) = 0
and the A-harmonic equation
d*A(x,dw) =0 (1.2)

for differential forms, where A : 2 x A/(R") — Al(R") satisfies the following
conditions:

|A(x, &) <alg]’™ and  (A(x,§),§) > |57 (1.3)

for almost every x € Q and all £ € A/(R"). Here a > 0 is a constant and 1 < p
< oo is a fixed exponent associated with (1.2). A solution to (1.2) is an element of
the Sobolev space W (€2, A'"") such that

[ A dw.a) =0
Q
forall p W;(Q, Al=1)y with compact support.

DEFINITION 1.4. We call u an A-harmonic tensor in 2 if u satisfies the
A-harmonic equation (1.2) in 2.

A differential /-form u € D'(Q2, A!) is called a closed form if du = 0 in Q.
Similarly, a differential (I 4+ 1)-form v € D'(2, A'™!) is called a coclosed form
if d*v = 0. Clearly, the A-harmonic equation is not affected by adding a closed
form to w. Therefore, any type of estimates about # must be modulo a closed form.

2. Local Weighted Imbedding Inequalities

DEFINITION 2.1. A weight w(x) is called an A,-weight for some » > 1 in a
domain €2, write w € A,(Q2), if w(x) > O a.e., and

1 1 1 1/(r—1) (r—1)
su — | wdx —/(—) dx) < o0 2.2)
é’p(|B|/B )(|B| s \w

for any ball B C €.

See [5] and [6] for properties of A, (£2)-weights. We will need the following gen-
eralized Holder inequality.
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LEMMA23. Let0 <a < 00,0 < B <ooands ' =a~ '+ B~ If f and g are
measurable functions on R", then

Ifglls.e < [ flleg - I8lls0
forany Q C R".

We also need the following lemma [5].

LEMMA 2.4. Ifw € A,(S2), then there exist constants 8 > 1 and C, independent
of w, such that

lwlig.s < CIBI"PElwl s
for all balls B C R".

The following weak reverse Holder inequality appears in [8].

LEMMA 2.5. Let u be an A-harmonic tensorin 2, p > 1l and 0 < s,t < oo.
Then there exists a constant C, independent of u, such that

lulls,5 < CIBI*™ " ull; ps

for all balls or cubes B with pB C Q.

Now we prove the following weighted imbedding inequality for A-harmonic ten-
sors and the homotopy operator 7.

THEOREM 2.6. Letu € L (Q,A), 1 = 1,2,...,n, 1 < s < o0, be an
A-harmonic tensor in a bounded domain @ C R" and T : C®(Q,A) —
C>® (2, AI=1Y be a homotopy operator defined in (1.1). Assume that p > 1 and
w € A, (2) for somer > 1. Then, for any ball B such that suppe C B C pB C €,
where ¢ from Cy°(B) is normalized by fB ¢(y)dy =1, there exists a constant C,

independent of u, such that

/s /s
(/ |T u|*w* dx) < C diam(B) (/ |u|’ w* dx) 2.7)
B pB

for any real number o with 0 < o < 1.
Proof. We first show that (2.7) holds for 0 < o < 1. Let¢t = s/(1 — «). Using
Lemma 2.3, we have

/s 1/s
(/ ITulsw“dx> = (/ (ITulw“/S)sdx>
B B
(t—s)/st
< ||Tu||,,3( / W'/ dx)
B
als
=||Tu||t,3</wdx) : (2.8)
B
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By Theorem A, we have

ITull;,p < Cy diam(B)]ull;,5-

29

(2.9)

Choose m = s/(1 + a(r — 1)), then m < s. Substituting (2.9) into (2.8) and using

Lemma 2.5, we have

1/s als
(/ |Tul*w® dx) < Cy diam(B)|lull,.p (f wdx)
B B

a/s
< Codiam(B) B/ . o5 ( / w dx) .(2.10)
B

Using Lemma 2.3 with 1/m = 1/s 4 (s — m)/sm, we obtain

1/m
IIuIIm,pB=</ Iul’"dX>
pB
1/m
= (/ (|u|wa/~vw—“/~v)’”dx>
pB
1/s 1 1/(r—1) a(r—1)/s
(L) ([,G) o)
pB pB w

for all balls B with pB C €. Substituting (2.11) into (2.10), we obtain

1/s
(/ \Tul w® dx)
B

1/s
gczdiam(B)|B|<'"—’>/m’</ Iulsw“dx> X
pB

als 1 1/(r—1) a(r—1)/s
() (LG =)
B pB\W

Now w € A,(2) yields

N

(2.11)

2.12)

r—1\ o/s
||w||‘f{;-||1/w||‘f;§,_l),p3<((/ wdx)(/ (1/w)1/(r_1)dx) )
pB
|
1

pB
1
=\||pB ’(—/ wdx) X
( |IOB| pB
1 1/(r—1) r—1\ o/s
x| —— — dx
G l.G) =) )

< G3| B,
Combining (2.13) and (2.12), we find that

1/s 1/s
(/ | Tul* w® dx) <Cy diam(B)(/ lul* w® dx)
B pB

(2.13)

(2.14)
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for all balls B with pB C 2. We have proved that (2.7) is true if 0 < o < 1.
Next, we prove (2.7) is true for « = 1, that is, we need to show that

ITulls,p,w < Cdiam(B)|lulls,p5,w- (2.15)
By Lemma 2.4, there exist constants 8 > 1 and Cs > 0, such that

lwlig.s < Cs|BI"P/Pllw] g (2.16)
for any cube or any ball B C R". Choose t = s8/(8 — 1), then 1 < s < ¢ and

B =1t/(t —s). Since 1/s = 1/t + (t — s)/st, by Lemma 2.3, Theorem A and
(2.16), we have

/s 1/s
(/ |Tu|fwdx> = (/(|Tu|w‘/f)fdx>
B B
1/t (t—s)/st
< (f |Tu|tdx) </ (wl/Y)Yt/(t—Y) dx)
B B

1/
CollTullrs - lwllys

. _ c 1/s
C7 diam(B)|B|" P/ lwll [, - lull,,

<
< Cediam(B)||ull; p - ||w||/15{‘;;

<

< Cydiam(B)BI™ Jwl}} - Null, 5. (2.17)

Let m = s/r. From Lemma 2.4, we find that
lulls < Cs|BI" "™ ull,. p- (2.18)

Lemma 2.3 yields

1/m
Nl pp = ( (Julw!Sw=1sym dx)
pB

1/s 1 1/(r—1) (r=1)/s
(s (L)) e
pB pB w

for all balls B with pB C 2. Note that w € A, (£2). Then

r—1\ 1/s
lwlh/s - /w5 < ((/ wdx)(/ (1/w>“<r—“dx) )
pB pB
1

Bl"| — wdx | x
('p '(|pB|/pB )

1 1 1/(r—1) r—1\ 1/s
(e [,(5) ) )
<|,OB| pB w

< Co|B|"". (2.20)
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Combining (2.17), (2.18), (2.19) and (2.20), we have

. _ 1 _
ITully. .0 < Crodiam(B)| B~ Jwll\ 51 BI™ /" )l o

~
. _ 1 1

< Crodiam(B)| B~ ™ lwll}y, - 11/wll ) llls. o5

<

1/(r—1),0B
C'll diam(B)”u”s,pB,w

for all balls B with pB C 2. Hence, (2.15) holds. The proof of Theorem 2.6 is
completed. O

THEOREM 2.21. Let € L;

loc

Q,AD, 1 = 1,2,...,n, 1 < s < o0, be an
A-harmonic tensor in a bounded domain Q@ C R" such that du € L;j (£2, A

and T :C®(Q2, A — C>®(Q, A=Y be a homotopy operator defined in (1.1).
Assume that o > 1 and w € A, (2) for some r > 1. Then, for any ball B such that
supp ¢ C B C 2, where ¢ from C3°(B) is normalized by fB o(y)dy =1, we have

/s 1/s
(/ |d(Tu)|Sw“dx) < C|B|1 /s (/ lu|* w® dx) (2.22)
B oB

for all balls B with o0 B C Q2 and any real number o with 0 < o < 1.

Proof. First, we assume that 0 < o < 1. Let f = 5 /(1 — «). From Caccioppoli-
type estimate for A-harmonic tensors, we know that there exists a constant Cj,
independent of u, such that

Idull; p < Cy diam(B) ™" ||ull; o 5 (2.23)

for any A-harmonic tensor u# in €2 and all balls or cubes B with 0 B C €2, where
o> 1.Nowletm =s/(1+a(r—1)). Using Lemma 2.3, (ii) in Theorem A, (2.23)
and Lemma 2.5, we have

1/s 1s
( / (T )] w dx) = ( f (Id(Tu)Iwo‘/S)de)
B B

(t—s)/st
< ||d(Tu>||,,B( f w!®/ (=) dx)
B

als
< ||d(Tu>||,,B( / wdx)
B

als
< (lullys + G2 diam(B)Ildullz,B)(f de)
B

als
< (lulle,s + C3”u”t,ch)</ wdx)
B

als
< Cyllulls o (/ wdx)
B

als
<cs|B|("’—”/mt||u||m,aB(f wdx) : (2.24)
B
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Using Lemma 2.3, we obtain

1/m
ltllmop = ( / (Juw®/Sw=/5ym dx)
pB

1/s 1 1/(r—1) a(r—1)/s
(L) (LG e
pB pB w

for all balls B with o B C 2. Substituting (2.25) into (2.24), then using (2.13)
(replacing p by o in (2.13)), we obtain

1/s 1/s
(/ |d(Tu)|Sw°‘dx> <c6|3|<1—“>/S(/ |u|sw°‘dx>
B oB

which ends the proof of Theorem 2.21 for the case 0 < o < 1. For the case o = 1,
the proof is similar to that of Theorem 2.6. ad

Note that the parameter « in both of Theorem 2.6 and Theorem 2.21 is any real
number with 0 < « < 1. Therefore, we can have different versions of the weighted
imbedding inequality by choosing « to be different values. For example, set ¢ =
1 — « in Theorem 2.6 and write du = w(x) dx. Then, inequality (2.7) becomes

1/s 1/s
(/ [Tulw™" du) < C diam(B) (f lu)Pw™" d,u) ) (2.26)
B pB

If we choose o = 1/r in Theorem 2.6, then (2.7) reduces to

/s 1/s
(/ |Tul*w'/” dx) < Cdiam(B)(/ lul*w'/" dx) . (2.27)
B pB

If we choose o« = 1/s in Theorem 2.6, then 0 < o < 1 since 1 < s < oo. Thus,
(2.7) reduces to the following symmetric version:

1/s 1/s
(/ITulswl/‘de) <Cdiam(3)<f Iulswl/sdx) ) (2.28)
B pB

Finally, if we choose o = 1 in Theorem 2.6, we have the following weighted
imbedding inequality.

”Tu”s,B,w < Cdiam(B)”u”s,pB,w- (229)

REMARK. Choosing « to be some special values in Theorem 2.21, we shall have
some similar results. For example, selecting @ = 1 in Theorem 2.21, we have

Id(Tw) 5.8 < C1IBI" ™ tlly.o8.0 < Calltt|ls.o8.0- (2.30)
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3. Global Weighted Imbedding Inequalities

We need the following properties of the Whitney covers appearing in [8] to prove
the global result.

LEMMA 3.1. Each 2 has a modified Whitney cover of cubes v = {Q;} such that

UQi:Q,

Z X /Do S Nra

Qev

for all x € R" and some N > 1 and if Q; N Q; # ¢, then there exists a cube R
(this cube does not need be a member of v) in Q; N Q; such that Q; U Q; C NR.
Moreover if Q is 5-John, then there is a distinguished cube Qo € v which can be
connected with every cube Q € v by a chain of cubes Qq, Q1, ..., Qr = Q from
vand such that Q C pQ;, i =0,1,2,...,k, for some p = p(n, ).

We prove the following global A,(€2)-weighted imbedding inequality in a
bounded domain €2 for A-harmonic tensors.

THEOREM 3.2. Letu € LS(Q,A), I = 1,2,...,n, 1 < 5 < 00, be an
A-harmonic tensor in a bounded domain Q@ C R" and T : C®(Q,A) —
C>® (2, A=Yy be a homotopy operator defined by

Tw=/(p(y)Kywdy.
Q

Assume that w € A, (S2) for some r > 1. Then, there exists a constant C, indepen-
dent of u, such that

1/s 1/s
(f |Tu|Sw°‘dx) gc(f |u|fwadx> , (3.3)
Q Q
/s /s
(/ |dTu|fwadx> gc(f |u|fwadx> (3.4)

Q
for any real number o with 0 < a < 1.
Proof. Using (2.7) and Lemma 3.1, we have

1/s 1/s
(/ | Tul’ w® dx) < Z(Cl diam(Q)</ |u| w® dx) )
Q pQ

Qev

1/s
< € diam() Z(/ |u|® w® dx)
pQ

Qev
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1/s
< C; diam(Q) Z(/ |ul* w® dx>
Q

Qev

1/s
< C; </ lu]*w® dx)
Q

which indicates that (3.3) holds. Using (2.22) and Lemma 3.1, we can prove (3.4)
similarly. The proof of Theorem 3.2 has been completed. O

REMARK. Choosing a to be some special values in (3.3) and (3.4), we shall have
some global results similar to the local case.
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