

Potential Analysis 18: 25–34, 2003.© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

$A_r(\Omega)$ -Weighted Imbedding Inequalities for A-Harmonic Tensors

SHUSEN DING*

Department of Mathematics, Seattle University, Seattle, WA 98122, U.S.A. (e-mail: sding@seattleu.edu)

(Received: 31 May 2001; accepted: 9 November 2001)

Abstract. We prove the basic $A_r(\Omega)$ -weighted imbedding inequalities for A-harmonic tensors. These results can be used to estimate the integrals for A-harmonic tensors and to study the integrability of A-harmonic tensors and the properties of the homotopy operator $T: C^{\infty}(D, \wedge^l) \rightarrow C^{\infty}(D, \wedge^{l-1})$.

Mathematics Subject Classifications (2000): Primary 31C45; Secondary 58A10, 35B45, 26D10.

Key words: $A_r(\Omega)$ -weights, imbedding inequalities, A-harmonic tensors.

1. Introduction

Let e_1, e_2, \ldots, e_n denote the standard unit basis of $\mathbb{R}^n, n \ge 2$, and $\mathbb{R} = \mathbb{R}^1$. Assume that $\wedge^l = \wedge^l(\mathbb{R}^n)$ is the linear space of *l*-vectors, spanned by the exterior products $e_I = e_{i_1} \wedge e_{i_2} \wedge \cdots e_{i_l}$, corresponding to all ordered *l*-tuples $I = (i_1, i_2, \ldots, i_l)$, $1 \le i_1 < i_2 < \cdots < i_l \le n, l = 0, 1, \ldots, n$. The Grassman algebra $\wedge = \bigoplus \wedge^l$ is a graded algebra with respect to the exterior products. For $\alpha = \sum \alpha^l e_l \in \wedge$ and $\beta = \sum \beta^l e_l \in \wedge$, the inner product in \wedge is given by $\langle \alpha, \beta \rangle = \sum \alpha^l \beta^l$ with summation over all *l*-tuples $I = (i_1, i_2, \ldots, i_l)$ and all integers $l = 0, 1, \ldots, n$. We define the Hodge star operator $\star : \wedge \to \wedge$ by the rule $\star 1 = e_1 \wedge e_2 \wedge \cdots \wedge e_n$ and $\alpha \wedge \star \beta = \beta \wedge \star \alpha = \langle \alpha, \beta \rangle (\star 1)$ for all $\alpha, \beta \in \wedge$. The norm of $\alpha \in \wedge$ is given by the formula $|\alpha|^2 = \langle \alpha, \alpha \rangle = \star (\alpha \wedge \star \alpha) \in \wedge^0 = \mathbb{R}$. The Hodge star is an isometric isomorphism on \wedge with $\star : \wedge^l \to \wedge^{n-l}$ and $\star \star (-1)^{l(n-l)} : \wedge^l \to \wedge^l$.

We always assume that Ω is a bounded domain in \mathbb{R}^n throughout this paper. Balls are denoted by *B* and σB is the ball with the same center as *B* and with diam $(\sigma B) = \sigma$ diam(B). We do not distinguish the balls from cubes throughout this paper. The *n*-dimensional Lebesgue measure of a set $E \subseteq \mathbb{R}^n$ is denoted by |E|. We call *w* a weight if $w \in L^1_{loc}(\mathbb{R}^n)$ and w > 0 a.e. For $0 , we denote the weighted <math>L^p$ -norm of a measurable function *f* over *E* by

$$||f||_{p,E,w} = \left(\int_E |f(x)|^p w(x) \,\mathrm{d}x\right)^{1/p}$$

^{*} Research supported by Seattle University Faculty Fellowships for Summer of 2000.

A differential *l*-form w on Ω is a de Rham current (see [9, Chapter III]) on Ω with values in $\wedge^{l}(\mathbf{R})$. We use $D'(\Omega, \wedge^{l})$ to denote the space of all differential *l*-forms and $L^{p}(\Omega, \wedge^{l})$ to denote the *l*-forms $w(x) = \sum_{I} w_{I}(x) dx_{I} = \sum w_{i_{1}i_{2}...i_{l}}(x) dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{l}}$ with $w_{I} \in L^{p}(\Omega, \mathbf{R})$ for all ordered *l*-tuples *I*. Thus $L^{p}(\Omega, \wedge^{l})$ is a Banach space with norm

$$\|w\|_{p,\Omega} = \left(\int_{\Omega} |w(x)|^p \, \mathrm{d}x\right)^{1/p} = \left(\int_{\Omega} \left(\sum_{I} |w_{I}(x)|^2\right)^{p/2} \, \mathrm{d}x\right)^{1/p}.$$

Similarly, $W_p^1(\Omega, \wedge^l)$ are those differential *l*-forms on Ω whose coefficients are in $W_p^1(\Omega, \mathbf{R})$. The notations $W_{p,\text{loc}}^1(\Omega, \mathbf{R})$ and $W_{p,\text{loc}}^1(\Omega, \wedge^l)$ are self-explanatory. We denote the exterior derivative by $d: D'(\Omega, \wedge^l) \to D'(\Omega, \wedge^{l+1})$ for l = 0, 1, ..., n. Its formal adjoint operator $d^*: D'(\Omega, \wedge^{l+1}) \to D'(\Omega, \wedge^l)$ is given by $d^* = (-1)^{nl+1} \star d \star$ on $D'(\Omega, \wedge^{l+1}), l = 0, 1, ..., n$.

T. Iwaniec and A. Lutoborski prove the following result in [7]: Let $D \subset \mathbb{R}^n$ be a bounded, convex domain. To each $y \in D$ there corresponds a linear operator $K_y : C^{\infty}(D, \wedge^l) \to C^{\infty}(D, \wedge^{l-1})$ defined by

$$(K_{y}w)(x;\xi_{1},\ldots,\xi_{l}) = \int_{0}^{1} t^{l-1}w(tx+y-ty;x-y,\xi_{1},\ldots,\xi_{l-1}) dt$$

are the decomposition

$$w = \mathrm{d}(K_{\mathrm{y}}w) + K_{\mathrm{y}}(\mathrm{d}w).$$

Then, T. Iwaniec and A. Lutoborski introduce a homotopy operator $T: C^{\infty}(D, \wedge^l) \to C^{\infty}(D, \wedge^{l-1})$ by averaging K_y over all points y in D

$$Tw = \int_D \varphi(y) K_y w \, \mathrm{d}y, \tag{1.1}$$

where $\varphi \in C_0^{\infty}(D)$ is normalized by $\int_D \varphi(y) dy = 1$, and prove the following imbedding inequalities for differential forms.

THEOREM A. Let $u \in L^s_{loc}(\Omega, \wedge^l)$, l = 1, 2, ..., n, $1 < s < \infty$, be a differential form in a bounded domain $\Omega \subset \mathbf{R}^n$. Assume that F is any convex subset such that supp $\varphi \subset F \subset \Omega$, where φ from $C_0^{\infty}(\Omega)$ is normalized by $\int_{\Omega} \varphi(y) \, dy = 1$. Then

- (i) $||Tu||_{s,F} \leq C \operatorname{diam}(F) ||u||_{s,F}$;
- (ii) $\|\mathbf{d}(Tu)\|_{s,F} \leq \|u\|_{s,F} + C \operatorname{diam}(F) \|\mathbf{d}u\|_{s,F}$,

where $C = 2^n \sigma_{n-1} v(\Omega)$, σ_{n-1} denotes the surface area of the unit sphere in \mathbb{R}^n and

$$\nu(\Omega) = \frac{(\operatorname{diam}(\Omega))^{n+1}}{\int_{\Omega} \operatorname{dist}(y, \partial\Omega) \, \mathrm{d}y}$$

The imbedding inequalities have been playing important roles in developing the L^p theory of differential forms, see [7]. In this paper, we prove the $A_r(\Omega)$ -weighted imbedding inequalities for A-harmonic tensors.

Many interesting results (see [1-4, 7, 8]) have been established in the study of the *p*-harmonic equation

$$\mathrm{d}^{\star}(|\mathrm{d} u|^{p-2}\mathrm{d} u) = 0$$

and the A-harmonic equation

$$\mathbf{d}^* A(x, \mathbf{d}w) = 0 \tag{1.2}$$

for differential forms, where $A: \Omega \times \wedge^{l}(\mathbf{R}^{n}) \to \wedge^{l}(\mathbf{R}^{n})$ satisfies the following conditions:

$$|A(x,\xi)| \leqslant a|\xi|^{p-1} \quad \text{and} \quad \langle A(x,\xi),\xi\rangle \geqslant |\xi|^p \tag{1.3}$$

for almost every $x \in \Omega$ and all $\xi \in \wedge^{l}(\mathbb{R}^{n})$. Here a > 0 is a constant and $1 is a fixed exponent associated with (1.2). A solution to (1.2) is an element of the Sobolev space <math>W_{p,\text{loc}}^{1}(\Omega, \wedge^{l-1})$ such that

$$\int_{\Omega} \langle A(x, \mathrm{d}w), \mathrm{d}\varphi \rangle = 0$$

for all $\varphi \in W_p^1(\Omega, \wedge^{l-1})$ with compact support.

DEFINITION 1.4. We call u an A-harmonic tensor in Ω if u satisfies the A-harmonic equation (1.2) in Ω .

A differential *l*-form $u \in D'(\Omega, \wedge^l)$ is called a closed form if du = 0 in Ω . Similarly, a differential (l + 1)-form $v \in D'(\Omega, \wedge^{l+1})$ is called a coclosed form if $d^*v = 0$. Clearly, the *A*-harmonic equation is not affected by adding a closed form to *w*. Therefore, any type of estimates about *u* must be modulo a closed form.

2. Local Weighted Imbedding Inequalities

DEFINITION 2.1. A weight w(x) is called an A_r -weight for some r > 1 in a domain Ω , write $w \in A_r(\Omega)$, if w(x) > 0 a.e., and

$$\sup_{B} \left(\frac{1}{|B|} \int_{B} w \, \mathrm{d}x\right) \left(\frac{1}{|B|} \int_{B} \left(\frac{1}{w}\right)^{1/(r-1)} \, \mathrm{d}x\right)^{(r-1)} < \infty \tag{2.2}$$

for any ball $B \subset \Omega$.

See [5] and [6] for properties of $A_r(\Omega)$ -weights. We will need the following generalized Hölder inequality.

LEMMA 2.3. Let $0 < \alpha < \infty$, $0 < \beta < \infty$ and $s^{-1} = \alpha^{-1} + \beta^{-1}$. If f and g are measurable functions on \mathbb{R}^n , then

$$\|fg\|_{s,\Omega} \leq \|f\|_{\alpha,\Omega} \cdot \|g\|_{\beta,\Omega}$$

for any $\Omega \subset \mathbf{R}^n$.

We also need the following lemma [5].

LEMMA 2.4. If $w \in A_r(\Omega)$, then there exist constants $\beta > 1$ and C, independent of w, such that

$$||w||_{\beta,B} \leq C|B|^{(1-\beta)/\beta} ||w||_{1,B}$$

for all balls $B \subset \mathbf{R}^n$.

The following weak reverse Hölder inequality appears in [8].

LEMMA 2.5. Let u be an A-harmonic tensor in Ω , $\rho > 1$ and $0 < s, t < \infty$. Then there exists a constant C, independent of u, such that

$$||u||_{s,B} \leq C|B|^{(t-s)/st}||u||_{t,\rho B}$$

for all balls or cubes B with $\rho B \subset \Omega$.

Now we prove the following weighted imbedding inequality for A-harmonic tensors and the homotopy operator T.

THEOREM 2.6. Let $u \in L^s_{loc}(\Omega, \wedge^l)$, $l = 1, 2, ..., n, 1 < s < \infty$, be an *A*-harmonic tensor in a bounded domain $\Omega \subset \mathbb{R}^n$ and $T : C^{\infty}(\Omega, \wedge^l) \to C^{\infty}(\Omega, \wedge^{l-1})$ be a homotopy operator defined in (1.1). Assume that $\rho > 1$ and $w \in A_r(\Omega)$ for some r > 1. Then, for any ball B such that $\sup \varphi \subset B \subset \rho B \subset \Omega$, where φ from $C_0^{\infty}(B)$ is normalized by $\int_B \varphi(y) \, dy = 1$, there exists a constant C, independent of u, such that

$$\left(\int_{B} |Tu|^{s} w^{\alpha} \, \mathrm{d}x\right)^{1/s} \leqslant C \operatorname{diam}(B) \left(\int_{\rho B} |u|^{s} w^{\alpha} \, \mathrm{d}x\right)^{1/s}$$
(2.7)

for any real number α *with* $0 < \alpha \leq 1$ *.*

Proof. We first show that (2.7) holds for $0 < \alpha < 1$. Let $t = s/(1 - \alpha)$. Using Lemma 2.3, we have

$$\left(\int_{B} |Tu|^{s} w^{\alpha} dx\right)^{1/s} = \left(\int_{B} \left(|Tu|w^{\alpha/s}\right)^{s} dx\right)^{1/s}$$
$$\leqslant \|Tu\|_{t,B} \left(\int_{B} w^{t\alpha/(t-s)} dx\right)^{(t-s)/st}$$
$$= \|Tu\|_{t,B} \left(\int_{B} w dx\right)^{\alpha/s}.$$
(2.8)

By Theorem A, we have

$$\|Tu\|_{t,B} \leqslant C_1 \operatorname{diam}(B) \|u\|_{t,B}. \tag{2.9}$$

Choose $m = s/(1 + \alpha(r - 1))$, then m < s. Substituting (2.9) into (2.8) and using Lemma 2.5, we have

$$\left(\int_{B} |Tu|^{s} w^{\alpha} \, \mathrm{d}x\right)^{1/s} \leqslant C_{1} \operatorname{diam}(B) \|u\|_{t,B} \left(\int_{B} w \, \mathrm{d}x\right)^{\alpha/s}$$
$$\leqslant C_{2} \operatorname{diam}(B) |B|^{(m-t)/mt} \|u\|_{m,\rho B} \left(\int_{B} w \, \mathrm{d}x\right)^{\alpha/s}. (2.10)$$

Using Lemma 2.3 with 1/m = 1/s + (s - m)/sm, we obtain

$$\|u\|_{m,\rho B} = \left(\int_{\rho B} |u|^m dx\right)^{1/m}$$

= $\left(\int_{\rho B} \left(|u|w^{\alpha/s}w^{-\alpha/s}\right)^m dx\right)^{1/m}$
 $\leqslant \left(\int_{\rho B} |u|^s w^\alpha dx\right)^{1/s} \left(\int_{\rho B} \left(\frac{1}{w}\right)^{1/(r-1)} dx\right)^{\alpha(r-1)/s}$ (2.11)

for all balls *B* with $\rho B \subset \Omega$. Substituting (2.11) into (2.10), we obtain

$$\left(\int_{B} |Tu|^{s} w^{\alpha} dx\right)^{1/s} \leq C_{2} \operatorname{diam}(B) |B|^{(m-t)/mt} \left(\int_{\rho B} |u|^{s} w^{\alpha} dx\right)^{1/s} \times \left(\int_{B} w dx\right)^{\alpha/s} \left(\int_{\rho B} \left(\frac{1}{w}\right)^{1/(r-1)} dx\right)^{\alpha(r-1)/s}.$$
(2.12)

Now $w \in A_r(\Omega)$ yields

$$\|w\|_{1,B}^{\alpha/s} \cdot \|1/w\|_{1/(r-1),\rho B}^{\alpha/s} \leq \left(\left(\int_{\rho B} w \, \mathrm{d}x \right) \left(\int_{\rho B} (1/w)^{1/(r-1)} \, \mathrm{d}x \right)^{r-1} \right)^{\alpha/s}$$
$$= \left(|\rho B|^r \left(\frac{1}{|\rho B|} \int_{\rho B} w \, \mathrm{d}x \right) \times \left(\frac{1}{|\rho B|} \int_{\rho B} \left(\frac{1}{w} \right)^{1/(r-1)} \, \mathrm{d}x \right)^{r-1} \right)^{\alpha/s}$$
$$\leq C_3 |B|^{\alpha r/s}. \tag{2.13}$$

Combining (2.13) and (2.12), we find that

$$\left(\int_{B} |Tu|^{s} w^{\alpha} \, \mathrm{d}x\right)^{1/s} \leqslant C_{4} \operatorname{diam}(B) \left(\int_{\rho B} |u|^{s} w^{\alpha} \, \mathrm{d}x\right)^{1/s}$$
(2.14)

for all balls *B* with $\rho B \subset \Omega$. We have proved that (2.7) is true if $0 < \alpha < 1$. Next, we prove (2.7) is true for $\alpha = 1$, that is, we need to show that

$$\|Tu\|_{s,B,w} \leqslant C \operatorname{diam}(B) \|u\|_{s,\rho B,w}.$$
(2.15)

By Lemma 2.4, there exist constants $\beta > 1$ and $C_5 > 0$, such that

$$\|w\|_{\beta,B} \leqslant C_5 |B|^{(1-\beta)/\beta} \|w\|_{1,B} \tag{2.16}$$

for any cube or any ball $B \subset \mathbb{R}^n$. Choose $t = s\beta/(\beta - 1)$, then 1 < s < t and $\beta = t/(t - s)$. Since 1/s = 1/t + (t - s)/st, by Lemma 2.3, Theorem A and (2.16), we have

$$\left(\int_{B} |Tu|^{s} w \, dx\right)^{1/s} = \left(\int_{B} (|Tu|w^{1/s})^{s} \, dx\right)^{1/s}$$

$$\leq \left(\int_{B} |Tu|^{t} \, dx\right)^{1/t} \left(\int_{B} (w^{1/s})^{st/(t-s)} \, dx\right)^{(t-s)/st}$$

$$\leq C_{6} ||Tu||_{t,B} \cdot ||w||_{\beta,B}^{1/s}$$

$$\leq C_{6} \operatorname{diam}(B) ||u||_{t,B} \cdot ||w||_{\beta,B}^{1/s}$$

$$\leq C_{7} \operatorname{diam}(B) |B|^{(1-\beta)/\beta s} ||w||_{1,B}^{1/s} \cdot ||u||_{t,B}$$

$$\leq C_{7} \operatorname{diam}(B) |B|^{-1/t} ||w||_{1,B}^{1/s} \cdot ||u||_{t,B}. \quad (2.17)$$

Let m = s/r. From Lemma 2.4, we find that

$$\|u\|_{t,B} \leqslant C_8 |B|^{(m-t)/mt} \|u\|_{m,\rho B}.$$
(2.18)

Lemma 2.3 yields

$$\|u\|_{m,\rho B} = \left(\int_{\rho B} (|u|w^{1/s}w^{-1/s})^m \,\mathrm{d}x\right)^{1/m} \\ \leqslant \left(\int_{\rho B} |u|^s w \,\mathrm{d}x\right)^{1/s} \left(\int_{\rho B} \left(\frac{1}{w}\right)^{1/(r-1)} \,\mathrm{d}x\right)^{(r-1)/s}$$
(2.19)

for all balls B with $\rho B \subset \Omega$. Note that $w \in A_r(\Omega)$. Then

$$\begin{split} \|w\|_{1,B}^{1/s} \cdot \|1/w\|_{1/(r-1),\rho B}^{1/s} &\leq \left(\left(\int_{\rho B} w \, \mathrm{d}x \right) \left(\int_{\rho B} (1/w)^{1/(r-1)} \, \mathrm{d}x \right)^{r-1} \right)^{1/s} \\ &= \left(|\rho B|^r \left(\frac{1}{|\rho B|} \int_{\rho B} w \, \mathrm{d}x \right) \times \right. \\ &\times \left(\frac{1}{|\rho B|} \int_{\rho B} \left(\frac{1}{w} \right)^{1/(r-1)} \, \mathrm{d}x \right)^{r-1} \right)^{1/s} \\ &\leq C_9 |B|^{r/s}. \end{split}$$
(2.20)

30

Combining (2.17), (2.18), (2.19) and (2.20), we have

$$\|Tu\|_{s,B,w} \leq C_{10} \operatorname{diam}(B)|B|^{-1/t} \|w\|_{1,B}^{1/s}|B|^{(m-t)/mt}\|u\|_{m,\rho B}$$

$$\leq C_{10} \operatorname{diam}(B)|B|^{-1/m} \|w\|_{1,B}^{1/s} \cdot \|1/w\|_{1/(r-1),\rho B}^{1/s} \|u\|_{s,\rho B,w}$$

$$\leq C_{11} \operatorname{diam}(B)\|u\|_{s,\rho B,w}$$

for all balls *B* with $\rho B \subset \Omega$. Hence, (2.15) holds. The proof of Theorem 2.6 is completed.

THEOREM 2.21. Let $\in L^s_{loc}(\Omega, \wedge^l)$, $l = 1, 2, ..., n, 1 < s < \infty$, be an *A*-harmonic tensor in a bounded domain $\Omega \subset \mathbb{R}^n$ such that $du \in L^s_{loc}(\Omega, \wedge^{l+1})$ and $T : C^{\infty}(\Omega, \wedge^l) \to C^{\infty}(\Omega, \wedge^{l-1})$ be a homotopy operator defined in (1.1). Assume that $\sigma > 1$ and $w \in A_r(\Omega)$ for some r > 1. Then, for any ball *B* such that supp $\varphi \subset B \subset \Omega$, where φ from $C_0^{\infty}(B)$ is normalized by $\int_B \varphi(y) \, dy = 1$, we have

$$\left(\int_{B} |\mathbf{d}(Tu)|^{s} w^{\alpha} \mathrm{d}x\right)^{1/s} \leqslant C|B|^{(1-\alpha)/s} \left(\int_{\sigma B} |u|^{s} w^{\alpha} \mathrm{d}x\right)^{1/s}$$
(2.22)

for all balls *B* with $\sigma B \subset \Omega$ and any real number α with $0 < \alpha \leq 1$.

Proof. First, we assume that $0 < \alpha < 1$. Let $t = s/(1 - \alpha)$. From Caccioppolitype estimate for A-harmonic tensors, we know that there exists a constant C_1 , independent of u, such that

$$\|du\|_{t,B} \leqslant C_1 \operatorname{diam}(B)^{-1} \|u\|_{t,\sigma B}$$
(2.23)

for any A-harmonic tensor u in Ω and all balls or cubes B with $\sigma B \subset \Omega$, where $\sigma > 1$. Now let $m = s/(1 + \alpha(r - 1))$. Using Lemma 2.3, (ii) in Theorem A, (2.23) and Lemma 2.5, we have

$$\begin{split} \left(\int_{B} |\mathbf{d}(Tu)|^{s} w^{\alpha} \, \mathrm{d}x \right)^{1/s} &= \left(\int_{B} \left(|\mathbf{d}(Tu)| w^{\alpha/s} \right)^{s} \mathrm{d}x \right)^{1/s} \\ &\leqslant \|\mathbf{d}(Tu)\|_{t,B} \left(\int_{B} w^{t\alpha/(t-s)} \, \mathrm{d}x \right)^{(t-s)/st} \\ &\leqslant \|\mathbf{d}(Tu)\|_{t,B} \left(\int_{B} w \, \mathrm{d}x \right)^{\alpha/s} \\ &\leqslant (\|u\|_{t,B} + C_{2} \operatorname{diam}(B)\| \mathrm{d}u\|_{t,B}) \left(\int_{B} w \, \mathrm{d}x \right)^{\alpha/s} \\ &\leqslant (\|u\|_{t,B} + C_{3}\|u\|_{t,\sigma B}) \left(\int_{B} w \, \mathrm{d}x \right)^{\alpha/s} \\ &\leqslant C_{4} \|u\|_{t,\sigma B} \left(\int_{B} w \, \mathrm{d}x \right)^{\alpha/s} \\ &\leqslant C_{5} |B|^{(m-t)/mt} \|u\|_{m,\sigma B} \left(\int_{B} w \, \mathrm{d}x \right)^{\alpha/s}. \end{split}$$
(2.24)

Using Lemma 2.3, we obtain

$$\|u\|_{m,\sigma B} = \left(\int_{\rho B} (|u|w^{\alpha/s}w^{-\alpha/s})^m \,\mathrm{d}x\right)^{1/m}$$
$$\leq \left(\int_{\rho B} |u|^s w^\alpha \,\mathrm{d}x\right)^{1/s} \left(\int_{\rho B} \left(\frac{1}{w}\right)^{1/(r-1)} \,\mathrm{d}x\right)^{\alpha(r-1)/s} \tag{2.25}$$

for all balls *B* with $\sigma B \subset \Omega$. Substituting (2.25) into (2.24), then using (2.13) (replacing ρ by σ in (2.13)), we obtain

$$\left(\int_{B} |\mathbf{d}(Tu)|^{s} w^{\alpha} \, \mathrm{d}x\right)^{1/s} \leqslant C_{6} |B|^{(1-\alpha)/s} \left(\int_{\sigma B} |u|^{s} w^{\alpha} \, \mathrm{d}x\right)^{1/s}$$

which ends the proof of Theorem 2.21 for the case $0 < \alpha < 1$. For the case $\alpha = 1$, the proof is similar to that of Theorem 2.6.

Note that the parameter α in both of Theorem 2.6 and Theorem 2.21 is any real number with $0 < \alpha \leq 1$. Therefore, we can have different versions of the weighted imbedding inequality by choosing α to be different values. For example, set $t = 1 - \alpha$ in Theorem 2.6 and write $d\mu = w(x) dx$. Then, inequality (2.7) becomes

$$\left(\int_{B} |Tu|^{s} w^{-t} \,\mathrm{d}\mu\right)^{1/s} \leqslant C \operatorname{diam}(B) \left(\int_{\rho B} |u|^{s} w^{-t} \,\mathrm{d}\mu\right)^{1/s}.$$
(2.26)

If we choose $\alpha = 1/r$ in Theorem 2.6, then (2.7) reduces to

$$\left(\int_{B} |Tu|^{s} w^{1/r} \, \mathrm{d}x\right)^{1/s} \leqslant C \operatorname{diam}(B) \left(\int_{\rho B} |u|^{s} w^{1/r} \, \mathrm{d}x\right)^{1/s}.$$
 (2.27)

If we choose $\alpha = 1/s$ in Theorem 2.6, then $0 < \alpha < 1$ since $1 < s < \infty$. Thus, (2.7) reduces to the following symmetric version:

$$\left(\int_{B} |Tu|^{s} w^{1/s} \,\mathrm{d}x\right)^{1/s} \leqslant C \operatorname{diam}(B) \left(\int_{\rho B} |u|^{s} w^{1/s} \,\mathrm{d}x\right)^{1/s}.$$
(2.28)

Finally, if we choose $\alpha = 1$ in Theorem 2.6, we have the following weighted imbedding inequality.

$$||Tu||_{s,B,w} \leqslant C \operatorname{diam}(B) ||u||_{s,\rho B,w}.$$
(2.29)

REMARK. Choosing α to be some special values in Theorem 2.21, we shall have some similar results. For example, selecting $\alpha = 1$ in Theorem 2.21, we have

$$\|\mathsf{d}(Tu)\|_{s,B,w} \leqslant C_1 |B|^{(1-\alpha)/s} \|u\|_{s,\sigma B,w} \leqslant C_2 \|u\|_{s,\sigma B,w}.$$
(2.30)

3. Global Weighted Imbedding Inequalities

We need the following properties of the Whitney covers appearing in [8] to prove the global result.

LEMMA 3.1. Each Ω has a modified Whitney cover of cubes $v = \{Q_i\}$ such that

$$\bigcup_{i} Q_{i} = \Omega,$$
$$\sum_{Q \in \nu} \chi_{(\sqrt{\frac{5}{4}})Q} \leq N_{\chi_{\Omega}}$$

for all $x \in \mathbb{R}^n$ and some N > 1 and if $Q_i \cap Q_j \neq \phi$, then there exists a cube R(this cube does not need be a member of v) in $Q_i \cap Q_j$ such that $Q_i \cup Q_j \subset NR$. Moreover if Ω is δ -John, then there is a distinguished cube $Q_0 \in v$ which can be connected with every cube $Q \in v$ by a chain of cubes $Q_0, Q_1, \ldots, Q_k = Q$ from v and such that $Q \subset \rho Q_i$, $i = 0, 1, 2, \ldots, k$, for some $\rho = \rho(n, \delta)$.

We prove the following global $A_r(\Omega)$ -weighted imbedding inequality in a bounded domain Ω for A-harmonic tensors.

THEOREM 3.2. Let $u \in L^s(\Omega, \wedge^l)$, $l = 1, 2, ..., n, 1 < s < \infty$, be an *A*-harmonic tensor in a bounded domain $\Omega \subset \mathbf{R}^n$ and $T : C^{\infty}(\Omega, \wedge^l) \to C^{\infty}(\Omega, \wedge^{l-1})$ be a homotopy operator defined by

$$Tw = \int_{\Omega} \varphi(y) K_y w \, \mathrm{d}y.$$

Assume that $w \in A_r(\Omega)$ for some r > 1. Then, there exists a constant C, independent of u, such that

$$\left(\int_{\Omega} |Tu|^{s} w^{\alpha} \, \mathrm{d}x\right)^{1/s} \leq C \left(\int_{\Omega} |u|^{s} w^{\alpha} \, \mathrm{d}x\right)^{1/s}, \tag{3.3}$$

$$\left(\int_{w} |\mathrm{d}Tu|^{s} w^{\alpha} \,\mathrm{d}x\right)^{1/s} \leqslant C \left(\int_{\Omega} |u|^{s} w^{\alpha} \,\mathrm{d}x\right)^{1/s} \tag{3.4}$$

for any real number α *with* $0 < \alpha \leq 1$ *.*

Proof. Using (2.7) and Lemma 3.1, we have

$$\left(\int_{\Omega} |Tu|^{s} w^{\alpha} dx\right)^{1/s} \leq \sum_{Q \in \nu} \left(C_{1} \operatorname{diam}(Q) \left(\int_{\rho Q} |u|^{s} w^{\alpha} dx\right)^{1/s}\right)$$
$$\leq C_{1} \operatorname{diam}(\Omega) \sum_{Q \in \nu} \left(\int_{\rho Q} |u|^{s} w^{\alpha} dx\right)^{1/s}$$

$$\leq C_1 \operatorname{diam}(\Omega) \sum_{Q \in \nu} \left(\int_{\Omega} |u|^s w^{\alpha} \, \mathrm{d}x \right)^{1/s}$$
$$\leq C_3 \left(\int_{\Omega} |u|^s w^{\alpha} \, \mathrm{d}x \right)^{1/s}$$

which indicates that (3.3) holds. Using (2.22) and Lemma 3.1, we can prove (3.4) similarly. The proof of Theorem 3.2 has been completed. \Box

REMARK. Choosing a to be some special values in (3.3) and (3.4), we shall have some global results similar to the local case.

References

- Ball, J. M.: 'Convexity conditions and existence theorems in nonlinear elasticity', Arch. Rational Mech. Anal. 63 (1977), 337–403.
- 2. Ball, J.M. and Murat, F.: 'W^{1, p}-quasi-convexity and variational problems for multiple integrals', *J. Funct. Anal.* **58** (1984), 225–253.
- 3. Ding, S.: 'Some examples of conjugate *p*-harmonic differential forms', *J. Math. Anal. Appl.* **227** (1998), 251–270.
- 4. Ding, S.: 'Weighted Caccioppoli-type estimates and weak reverse Hölder inequalities for *A*-harmonic tensors', *Proc. Amer. Math. Soc.* **127** (1999), 2657–2664.
- 5. Garnett, J.B.: Bounded Analytic Functions, Academic Press, New York, 1970.
- 6. Heinonen, J., Kilpelainen, T. and Martio, O.: *Nonlinear Potential Theory of Degenerate Elliptic Equations*, Oxford, 1993.
- 7. Iwaniec, T. and Lutoborski, A.: 'Integral estimates for null Lagrangians', *Arch. Rational Mech. Anal.* **125** (1993), 25–79.
- 8. Nolder, C.A.: 'Hardy–Littlewood theorems for A-harmonic tensors', *Illinois J. Math.* **43** (1999), 613–631.
- 9. De Rham, G.: Differential Manifolds, Springer-Verlag, 1980.