$A_{r}(\Omega)$-Weighted Imbedding Inequalities for A-Harmonic Tensors

SHUSEN DING*
Department of Mathematics, Seattle University, Seattle, WA 98122, U.S.A.
(e-mail: sding@seattleu.edu)

(Received: 31 May 2001; accepted: 9 November 2001)

Abstract

We prove the basic $A_{r}(\Omega)$-weighted imbedding inequalities for A-harmonic tensors. These results can be used to estimate the integrals for A-harmonic tensors and to study the integrability of A-harmonic tensors and the properties of the homotopy operator $T: C^{\infty}\left(D, \wedge^{l}\right) \rightarrow$ $C^{\infty}\left(D, \wedge^{l-1}\right)$.

Mathematics Subject Classifications (2000): Primary 31C45; Secondary 58A10, 35B45, 26D10.
Key words: $A_{r}(\Omega)$-weights, imbedding inequalities, A-harmonic tensors.

1. Introduction

Let $e_{1}, e_{2}, \ldots, e_{n}$ denote the standard unit basis of $\mathbf{R}^{n}, n \geqslant 2$, and $\mathbf{R}=\mathbf{R}^{1}$. Assume that $\wedge^{l}=\wedge^{l}\left(\mathbf{R}^{n}\right)$ is the linear space of l-vectors, spanned by the exterior products $e_{I}=e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots e_{i_{l}}$, corresponding to all ordered l-tuples $I=\left(i_{1}, i_{2}, \ldots, i_{l}\right)$, $1 \leqslant i_{1}<i_{2}<\cdots<i_{l} \leqslant n, l=0,1, \ldots, n$. The Grassman algebra $\wedge=\bigoplus \wedge^{l}$ is a graded algebra with respect to the exterior products. For $\alpha=\sum \alpha^{I} e_{I} \in \wedge$ and $\beta=\sum \beta^{I} e_{I} \in \wedge$, the inner product in \wedge is given by $\langle\alpha, \beta\rangle=\sum \alpha^{I} \beta^{I}$ with summation over all l-tuples $I=\left(i_{1}, i_{2}, \ldots, i_{l}\right)$ and all integers $l=0,1, \ldots, n$. We define the Hodge star operator $\star: \wedge \rightarrow \wedge$ by the rule $\star 1=e_{1} \wedge e_{2} \wedge \cdots \wedge e_{n}$ and $\alpha \wedge \star \beta=\beta \wedge \star \alpha=\langle\alpha, \beta\rangle(\star 1)$ for all $\alpha, \beta \in \wedge$. The norm of $\alpha \in \wedge$ is given by the formula $|a|^{2}=\langle\alpha, \alpha\rangle=\star(\alpha \wedge \star \alpha) \in \wedge^{0}=\mathbf{R}$. The Hodge star is an isometric isomorphism on \wedge with $\star: \wedge^{l} \rightarrow \wedge^{n-l}$ and $\star \star(-1)^{l(n-l)}: \wedge^{l} \rightarrow \wedge^{l}$.

We always assume that Ω is a bounded domain in \mathbf{R}^{n} throughout this paper. Balls are denoted by B and σB is the ball with the same center as B and with $\operatorname{diam}(\sigma B)=\sigma \operatorname{diam}(B)$. We do not distinguish the balls from cubes throughout this paper. The n-dimensional Lebesgue measure of a set $E \subseteq \mathbf{R}^{n}$ is denoted by $|E|$. We call w a weight if $w \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{n}\right)$ and $w>0$ a.e. For $0<p<\infty$, we denote the weighted L^{p}-norm of a measurable function f over E by

$$
\|f\|_{p, E, w}=\left(\int_{E}|f(x)|^{p} w(x) \mathrm{d} x\right)^{1 / p}
$$

[^0]A differential l-form w on Ω is a de Rham current (see [9, Chapter III]) on Ω with values in $\wedge^{l}(\mathbf{R})$. We use $D^{\prime}\left(\Omega, \wedge^{l}\right)$ to denote the space of all differential l-forms and $L^{p}\left(\Omega, \wedge^{l}\right)$ to denote the l-forms $w(x)=\sum_{I} w_{I}(x) \mathrm{d} x_{I}=\sum w_{i_{1} i_{2} \ldots i_{l}}$ $(x) \mathrm{d} x_{i_{1}} \wedge \mathrm{~d} x_{i_{2}} \wedge \cdots \wedge \mathrm{~d} x_{i_{l}}$ with $w_{I} \in L^{p}(\Omega, \mathbf{R})$ for all ordered l-tuples I. Thus $L^{p}\left(\Omega, \wedge^{l}\right)$ is a Banach space with norm

$$
\|w\|_{p, \Omega}=\left(\int_{\Omega}|w(x)|^{p} \mathrm{~d} x\right)^{1 / p}=\left(\int_{\Omega}\left(\sum_{I}\left|w_{I}(x)\right|^{2}\right)^{p / 2} \mathrm{~d} x\right)^{1 / p}
$$

Similarly, $W_{p}^{1}\left(\Omega, \wedge^{l}\right)$ are those differential l-forms on Ω whose coefficients are in $W_{p}^{1}(\Omega, \mathbf{R})$. The notations $W_{p, \text { loc }}^{1}(\Omega, \mathbf{R})$ and $W_{p, \text { loc }}^{1}\left(\Omega, \wedge^{l}\right)$ are self-explanatory. We denote the exterior derivative by $\mathrm{d}: D^{\prime}\left(\Omega, \wedge^{l}\right) \rightarrow D^{\prime}\left(\Omega, \wedge^{l+1}\right)$ for $l=0,1, \ldots, n$. Its formal adjoint operator $\mathrm{d}^{\star}: D^{\prime}\left(\Omega, \wedge^{l+1}\right) \rightarrow D^{\prime}\left(\Omega, \wedge^{l}\right)$ is given by $\mathrm{d}^{\star}=$ $(-1)^{n l+1} \star \mathrm{~d} \star$ on $D^{\prime}\left(\Omega, \wedge^{l+1}\right), l=0,1, \ldots, n$.
T. Iwaniec and A. Lutoborski prove the following result in [7]: Let $D \subset \mathbf{R}^{n}$ be a bounded, convex domain. To each $y \in D$ there corresponds a linear operator $K_{y}: C^{\infty}\left(D, \wedge^{l}\right) \rightarrow C^{\infty}\left(D, \wedge^{l-1}\right)$ defined by

$$
\left(K_{y} w\right)\left(x ; \xi_{1}, \ldots, \xi_{l}\right)=\int_{0}^{1} t^{l-1} w\left(t x+y-t y ; x-y, \xi_{1}, \ldots, \xi_{l-1}\right) \mathrm{d} t
$$

are the decomposition

$$
w=\mathrm{d}\left(K_{y} w\right)+K_{y}(\mathrm{~d} w)
$$

Then, T. Iwaniec and A. Lutoborski introduce a homotopy operator T : $C^{\infty}\left(D, \wedge^{l}\right)$ $\rightarrow C^{\infty}\left(D, \wedge^{l-1}\right)$ by averaging K_{y} over all points y in D

$$
\begin{equation*}
T w=\int_{D} \varphi(y) K_{y} w \mathrm{~d} y \tag{1.1}
\end{equation*}
$$

where $\varphi \in C_{0}^{\infty}(D)$ is normalized by $\int_{D} \varphi(y) \mathrm{d} y=1$, and prove the following imbedding inequalities for differential forms.

THEOREM A. Let $u \in L_{\text {loc }}^{s}\left(\Omega, \wedge^{l}\right), l=1,2, \ldots, n, 1<s<\infty$, be a differential form in a bounded domain $\Omega \subset \mathbf{R}^{n}$. Assume that F is any convex subset such that $\operatorname{supp} \varphi \subset F \subset \Omega$, where φ from $C_{0}^{\infty}(\Omega)$ is normalized by $\int_{\Omega} \varphi(y) \mathrm{d} y=1$. Then
(i) $\|T u\|_{s, F} \leqslant C \operatorname{diam}(F)\|u\|_{s, F}$;
(ii) $\|\mathrm{d}(T u)\|_{s, F} \leqslant\|u\|_{s, F}+C \operatorname{diam}(F)\|\mathrm{d} u\|_{s, F}$,
where $C=2^{n} \sigma_{n-1} \nu(\Omega), \sigma_{n-1}$ denotes the surface area of the unit sphere in \mathbf{R}^{n} and

$$
\nu(\Omega)=\frac{(\operatorname{diam}(\Omega))^{n+1}}{\int_{\Omega} \operatorname{dist}(y, \partial \Omega) \mathrm{d} y}
$$

The imbedding inequalities have been playing important roles in developing the L^{p} theory of differential forms, see [7]. In this paper, we prove the $A_{r}(\Omega)$-weighted imbedding inequalities for A-harmonic tensors.

Many interesting results (see $[1-4,7,8]$) have been established in the study of the p-harmonic equation

$$
\mathrm{d}^{\star}\left(|\mathrm{d} u|^{p-2} \mathrm{~d} u\right)=0
$$

and the A-harmonic equation

$$
\begin{equation*}
\mathrm{d}^{\star} A(x, \mathrm{~d} w)=0 \tag{1.2}
\end{equation*}
$$

for differential forms, where $A: \Omega \times \wedge^{l}\left(\mathbf{R}^{n}\right) \rightarrow \wedge^{l}\left(\mathbf{R}^{n}\right)$ satisfies the following conditions:

$$
\begin{equation*}
|A(x, \xi)| \leqslant a|\xi|^{p-1} \quad \text { and } \quad\langle A(x, \xi), \xi\rangle \geqslant|\xi|^{p} \tag{1.3}
\end{equation*}
$$

for almost every $x \in \Omega$ and all $\xi \in \wedge^{l}\left(\mathbf{R}^{n}\right)$. Here $a>0$ is a constant and $1<p$ $<\infty$ is a fixed exponent associated with (1.2). A solution to (1.2) is an element of the Sobolev space $W_{p, \text { loc }}^{1}\left(\Omega, \wedge^{l-1}\right)$ such that

$$
\int_{\Omega}\langle A(x, \mathrm{~d} w), \mathrm{d} \varphi\rangle=0
$$

for all $\varphi \in W_{p}^{1}\left(\Omega, \wedge^{l-1}\right)$ with compact support.
DEFINITION 1.4. We call u an A-harmonic tensor in Ω if u satisfies the A-harmonic equation (1.2) in Ω.

A differential l-form $u \in D^{\prime}\left(\Omega, \wedge^{l}\right)$ is called a closed form if $\mathrm{d} u=0$ in Ω. Similarly, a differential $(l+1)$-form $v \in D^{\prime}\left(\Omega, \wedge^{l+1}\right)$ is called a coclosed form if $\mathrm{d}^{\star} v=0$. Clearly, the A-harmonic equation is not affected by adding a closed form to w. Therefore, any type of estimates about u must be modulo a closed form.

2. Local Weighted Imbedding Inequalities

DEFINITION 2.1. A weight $w(x)$ is called an A_{r}-weight for some $r>1$ in a domain Ω, write $w \in A_{r}(\Omega)$, if $w(x)>0$ a.e., and

$$
\begin{equation*}
\operatorname{supp}_{B}\left(\frac{1}{|B|} \int_{B} w \mathrm{~d} x\right)\left(\frac{1}{|B|} \int_{B}\left(\frac{1}{w}\right)^{1 /(r-1)} \mathrm{d} x\right)^{(r-1)}<\infty \tag{2.2}
\end{equation*}
$$

for any ball $B \subset \Omega$.
See [5] and [6] for properties of $A_{r}(\Omega)$-weights. We will need the following generalized Hölder inequality.

LEMMA 2.3. Let $0<\alpha<\infty, 0<\beta<\infty$ and $s^{-1}=\alpha^{-1}+\beta^{-1}$. If f and g are measurable functions on \mathbf{R}^{n}, then

$$
\|f g\|_{s, \Omega} \leqslant\|f\|_{\alpha, \Omega} \cdot\|g\|_{\beta, \Omega}
$$

for any $\Omega \subset \mathbf{R}^{n}$.
We also need the following lemma [5].
LEMMA 2.4. If $w \in A_{r}(\Omega)$, then there exist constants $\beta>1$ and C, independent of w, such that

$$
\|w\|_{\beta, B} \leqslant C|B|^{(1-\beta) / \beta}\|w\|_{1, B}
$$

for all balls $B \subset \mathbf{R}^{n}$.
The following weak reverse Hölder inequality appears in [8].
LEMMA 2.5. Let u be an A-harmonic tensor in $\Omega, \rho>1$ and $0<s, t<\infty$. Then there exists a constant C, independent of u, such that

$$
\|u\|_{s, B} \leqslant C|B|^{(t-s) / s t}\|u\|_{t, \rho B}
$$

for all balls or cubes B with $\rho B \subset \Omega$.
Now we prove the following weighted imbedding inequality for A-harmonic tensors and the homotopy operator T.

THEOREM 2.6. Let $u \in L_{\text {loc }}^{s}\left(\Omega, \wedge^{l}\right), l=1,2, \ldots, n, 1<s<\infty$, be an A-harmonic tensor in a bounded domain $\Omega \subset \mathbf{R}^{n}$ and $T: C^{\infty}\left(\Omega, \wedge^{l}\right) \rightarrow$ $C^{\infty}\left(\Omega, \wedge^{l-1}\right)$ be a homotopy operator defined in (1.1). Assume that $\rho>1$ and $w \in A_{r}(\Omega)$ for some $r>1$. Then, for any ball B such that $\operatorname{supp} \varphi \subset B \subset \rho B \subset \Omega$, where φ from $C_{0}^{\infty}(B)$ is normalized by $\int_{B} \varphi(y) \mathrm{d} y=1$, there exists a constant C, independent of u, such that

$$
\begin{equation*}
\left(\int_{B}|T u|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s} \leqslant C \operatorname{diam}(B)\left(\int_{\rho B}|u|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s} \tag{2.7}
\end{equation*}
$$

for any real number α with $0<\alpha \leqslant 1$.
Proof. We first show that (2.7) holds for $0<\alpha<1$. Let $t=s /(1-\alpha)$. Using Lemma 2.3, we have

$$
\begin{align*}
\left(\int_{B}|T u|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s} & =\left(\int_{B}\left(|T u| w^{\alpha / s}\right)^{s} \mathrm{~d} x\right)^{1 / s} \\
& \leqslant\|T u\|_{t, B}\left(\int_{B} w^{t \alpha /(t-s)} \mathrm{d} x\right)^{(t-s) / s t} \\
& =\|T u\|_{t, B}\left(\int_{B} w \mathrm{~d} x\right)^{\alpha / s} \tag{2.8}
\end{align*}
$$

By Theorem A, we have

$$
\begin{equation*}
\|T u\|_{t, B} \leqslant C_{1} \operatorname{diam}(B)\|u\|_{t, B} \tag{2.9}
\end{equation*}
$$

Choose $m=s /(1+\alpha(r-1))$, then $m<s$. Substituting (2.9) into (2.8) and using Lemma 2.5, we have

$$
\begin{align*}
\left(\int_{B}|T u|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s} & \leqslant C_{1} \operatorname{diam}(B)\|u\|_{t, B}\left(\int_{B} w \mathrm{~d} x\right)^{\alpha / s} \\
& \leqslant C_{2} \operatorname{diam}(B)|B|^{(m-t) / m t}\|u\|_{m, \rho B}\left(\int_{B} w \mathrm{~d} x\right)^{\alpha / s} \tag{2.10}
\end{align*}
$$

Using Lemma 2.3 with $1 / m=1 / s+(s-m) / s m$, we obtain

$$
\begin{align*}
\|u\|_{m, \rho B} & =\left(\int_{\rho B}|u|^{m} \mathrm{~d} x\right)^{1 / m} \\
& =\left(\int_{\rho B}\left(|u| w^{\alpha / s} w^{-\alpha / s}\right)^{m} \mathrm{~d} x\right)^{1 / m} \\
& \leqslant\left(\int_{\rho B}|u|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s}\left(\int_{\rho B}\left(\frac{1}{w}\right)^{1 /(r-1)} \mathrm{d} x\right)^{\alpha(r-1) / s} \tag{2.11}
\end{align*}
$$

for all balls B with $\rho B \subset \Omega$. Substituting (2.11) into (2.10), we obtain

$$
\begin{align*}
& \left(\int_{B}|T u|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s} \\
& \quad \leqslant C_{2} \operatorname{diam}(B)|B|^{(m-t) / m t}\left(\int_{\rho B}|u|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s} \times \\
& \quad \times\left(\int_{B} w \mathrm{~d} x\right)^{\alpha / s}\left(\int_{\rho B}\left(\frac{1}{w}\right)^{1 /(r-1)} \mathrm{d} x\right)^{\alpha(r-1) / s} . \tag{2.12}
\end{align*}
$$

Now $w \in A_{r}(\Omega)$ yields

$$
\begin{align*}
\|w\|_{1, B}^{\alpha / s} \cdot\|1 / w\|_{1 /(r-1), \rho B}^{\alpha / s} \leqslant & \left(\left(\int_{\rho B} w \mathrm{~d} x\right)\left(\int_{\rho B}(1 / w)^{1 /(r-1)} \mathrm{d} x\right)^{r-1}\right)^{\alpha / s} \\
= & \left(|\rho B|^{r}\left(\frac{1}{|\rho B|} \int_{\rho B} w \mathrm{~d} x\right) \times\right. \\
& \left.\times\left(\frac{1}{|\rho B|} \int_{\rho B}\left(\frac{1}{w}\right)^{1 /(r-1)} \mathrm{d} x\right)^{r-1}\right)^{\alpha / s} \\
\leqslant & C_{3}|B|^{\alpha r / s} . \tag{2.13}
\end{align*}
$$

Combining (2.13) and (2.12), we find that

$$
\begin{equation*}
\left(\int_{B}|T u|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s} \leqslant C_{4} \operatorname{diam}(B)\left(\int_{\rho B}|u|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s} \tag{2.14}
\end{equation*}
$$

for all balls B with $\rho B \subset \Omega$. We have proved that (2.7) is true if $0<\alpha<1$.
Next, we prove (2.7) is true for $\alpha=1$, that is, we need to show that

$$
\begin{equation*}
\|T u\|_{s, B, w} \leqslant C \operatorname{diam}(B)\|u\|_{s, \rho B, w} . \tag{2.15}
\end{equation*}
$$

By Lemma 2.4, there exist constants $\beta>1$ and $C_{5}>0$, such that

$$
\begin{equation*}
\|w\|_{\beta, B} \leqslant C_{5}|B|^{(1-\beta) / \beta}\|w\|_{1, B} \tag{2.16}
\end{equation*}
$$

for any cube or any ball $B \subset \mathbf{R}^{n}$. Choose $t=s \beta /(\beta-1)$, then $1<s<t$ and $\beta=t /(t-s)$. Since $1 / s=1 / t+(t-s) / s t$, by Lemma 2.3, Theorem A and (2.16), we have

$$
\begin{align*}
\left(\int_{B}|T u|^{s} w \mathrm{~d} x\right)^{1 / s} & =\left(\int_{B}\left(|T u| w^{1 / s}\right)^{s} \mathrm{~d} x\right)^{1 / s} \\
& \leqslant\left(\int_{B}|T u|^{t} \mathrm{~d} x\right)^{1 / t}\left(\int_{B}\left(w^{1 / s}\right)^{s t /(t-s)} \mathrm{d} x\right)^{(t-s) / s t} \\
& \leqslant C_{6}\|T u\|_{t, B} \cdot\|w\|_{\beta, B}^{1 / s} \\
& \leqslant C_{6} \operatorname{diam}(B)\|u\|_{t, B} \cdot\|w\|_{\beta, B}^{1 / s} \\
& \leqslant C_{7} \operatorname{diam}(B)|B|^{(1-\beta) / \beta s}\|w\|_{1, B}^{1 / s} \cdot\|u\|_{t, B} \\
& \leqslant C_{7} \operatorname{diam}(B)|B|^{-1 / t}\|w\|_{1, B}^{1 / s} \cdot\|u\|_{t, B} \tag{2.17}
\end{align*}
$$

Let $m=s / r$. From Lemma 2.4, we find that

$$
\begin{equation*}
\|u\|_{t, B} \leqslant C_{8}|B|^{(m-t) / m t}\|u\|_{m, \rho B} \tag{2.18}
\end{equation*}
$$

Lemma 2.3 yields

$$
\begin{align*}
\|u\|_{m, \rho B} & =\left(\int_{\rho B}\left(|u| w^{1 / s} w^{-1 / s}\right)^{m} \mathrm{~d} x\right)^{1 / m} \\
& \leqslant\left(\int_{\rho B}|u|^{s} w \mathrm{~d} x\right)^{1 / s}\left(\int_{\rho B}\left(\frac{1}{w}\right)^{1 /(r-1)} \mathrm{d} x\right)^{(r-1) / s} \tag{2.19}
\end{align*}
$$

for all balls B with $\rho B \subset \Omega$. Note that $w \in A_{r}(\Omega)$. Then

$$
\begin{align*}
\|w\|_{1, B}^{1 / s} \cdot\|1 / w\|_{1 /(r-1), \rho B}^{1 / s} \leqslant & \left(\left(\int_{\rho B} w \mathrm{~d} x\right)\left(\int_{\rho B}(1 / w)^{1 /(r-1)} \mathrm{d} x\right)^{r-1}\right)^{1 / s} \\
= & \left(|\rho B|^{r}\left(\frac{1}{|\rho B|} \int_{\rho B} w \mathrm{~d} x\right) \times\right. \\
& \left.\times\left(\frac{1}{|\rho B|} \int_{\rho B}\left(\frac{1}{w}\right)^{1 /(r-1)} \mathrm{d} x\right)^{r-1}\right)^{1 / s} \\
\leqslant & C_{9}|B|^{r / s} \tag{2.20}
\end{align*}
$$

Combining (2.17), (2.18), (2.19) and (2.20), we have

$$
\begin{aligned}
\|T u\|_{s, B, w} & \leqslant C_{10} \operatorname{diam}(B)|B|^{-1 / t}\|w\|_{1, B}^{1 / s}|B|^{(m-t) / m t}\|u\|_{m, \rho B} \\
& \leqslant C_{10} \operatorname{diam}(B)|B|^{-1 / m}\|w\|_{1, B}^{1 / s} \cdot\|1 / w\|_{1 /(r-1), \rho B}^{1 / s}\|u\|_{s, \rho B, w} \\
& \leqslant C_{11} \operatorname{diam}(B)\|u\|_{s, \rho B, w}
\end{aligned}
$$

for all balls B with $\rho B \subset \Omega$. Hence, (2.15) holds. The proof of Theorem 2.6 is completed.

THEOREM 2.21. Let $\in L_{\mathrm{loc}}^{s}\left(\Omega, \wedge^{l}\right), l=1,2, \ldots, n, 1<s<\infty$, be an A-harmonic tensor in a bounded domain $\Omega \subset \mathbf{R}^{n}$ such that $d u \in L_{\mathrm{loc}}^{s}\left(\Omega, \wedge^{l+1}\right)$ and $T: C^{\infty}\left(\Omega, \wedge^{l}\right) \rightarrow C^{\infty}\left(\Omega, \wedge^{l-1}\right)$ be a homotopy operator defined in (1.1). Assume that $\sigma>1$ and $w \in A_{r}(\Omega)$ for some $r>1$. Then, for any ball B such that $\operatorname{supp} \varphi \subset B \subset \Omega$, where φ from $C_{0}^{\infty}(B)$ is normalized by $\int_{B} \varphi(y) \mathrm{d} y=1$, we have

$$
\begin{equation*}
\left(\int_{B}|\mathrm{~d}(T u)|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s} \leqslant C|B|^{(1-\alpha) / s}\left(\int_{\sigma B}|u|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s} \tag{2.22}
\end{equation*}
$$

for all balls B with $\sigma B \subset \Omega$ and any real number α with $0<\alpha \leqslant 1$.
Proof. First, we assume that $0<\alpha<1$. Let $t=s /(1-\alpha)$. From Caccioppolitype estimate for A-harmonic tensors, we know that there exists a constant C_{1}, independent of u, such that

$$
\begin{equation*}
\|\mathrm{d} u\|_{t, B} \leqslant C_{1} \operatorname{diam}(B)^{-1}\|u\|_{t, \sigma B} \tag{2.23}
\end{equation*}
$$

for any A-harmonic tensor u in Ω and all balls or cubes B with $\sigma B \subset \Omega$, where $\sigma>1$. Now let $m=s /(1+\alpha(r-1))$. Using Lemma 2.3, (ii) in Theorem A, (2.23) and Lemma 2.5, we have

$$
\begin{align*}
\left(\int_{B}|\mathrm{~d}(T u)|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s} & =\left(\int_{B}\left(|\mathrm{~d}(T u)| w^{\alpha / s}\right)^{s} \mathrm{~d} x\right)^{1 / s} \\
& \leqslant\|\mathrm{~d}(T u)\|_{t, B}\left(\int_{B} w^{t \alpha /(t-s)} \mathrm{d} x\right)^{(t-s) / s t} \\
& \leqslant\|\mathrm{~d}(T u)\|_{t, B}\left(\int_{B} w \mathrm{~d} x\right)^{\alpha / s} \\
& \leqslant\left(\|u\|_{t, B}+C_{2} \operatorname{diam}(B)\|\mathrm{d} u\|_{t, B}\right)\left(\int_{B} w \mathrm{~d} x\right)^{\alpha / s} \\
& \leqslant\left(\|u\|_{t, B}+C_{3}\|u\|_{t, \sigma B}\right)\left(\int_{B} w \mathrm{~d} x\right)^{\alpha / s} \\
& \leqslant C_{4}\|u\|_{t, \sigma B}\left(\int_{B} w \mathrm{~d} x\right)^{\alpha / s} \\
& \leqslant C_{5}|B|^{(m-t) / m t}\|u\|_{m, \sigma B}\left(\int_{B} w \mathrm{~d} x\right)^{\alpha / s} \tag{2.24}
\end{align*}
$$

Using Lemma 2.3, we obtain

$$
\begin{align*}
\|u\|_{m, \sigma B} & =\left(\int_{\rho B}\left(|u| w^{\alpha / s} w^{-\alpha / s}\right)^{m} \mathrm{~d} x\right)^{1 / m} \\
& \leqslant\left(\int_{\rho B}|u|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s}\left(\int_{\rho B}\left(\frac{1}{w}\right)^{1 /(r-1)} \mathrm{d} x\right)^{\alpha(r-1) / s} \tag{2.25}
\end{align*}
$$

for all balls B with $\sigma B \subset \Omega$. Substituting (2.25) into (2.24), then using (2.13) (replacing ρ by σ in (2.13)), we obtain

$$
\left(\int_{B}|\mathrm{~d}(T u)|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s} \leqslant C_{6}|B|^{(1-\alpha) / s}\left(\int_{\sigma B}|u|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s}
$$

which ends the proof of Theorem 2.21 for the case $0<\alpha<1$. For the case $\alpha=1$, the proof is similar to that of Theorem 2.6.

Note that the parameter α in both of Theorem 2.6 and Theorem 2.21 is any real number with $0<\alpha \leqslant 1$. Therefore, we can have different versions of the weighted imbedding inequality by choosing α to be different values. For example, set $t=$ $1-\alpha$ in Theorem 2.6 and write $\mathrm{d} \mu=w(x) \mathrm{d} x$. Then, inequality (2.7) becomes

$$
\begin{equation*}
\left(\int_{B}|T u|^{s} w^{-t} \mathrm{~d} \mu\right)^{1 / s} \leqslant C \operatorname{diam}(B)\left(\int_{\rho B}|u|^{s} w^{-t} \mathrm{~d} \mu\right)^{1 / s} \tag{2.26}
\end{equation*}
$$

If we choose $\alpha=1 / r$ in Theorem 2.6, then (2.7) reduces to

$$
\begin{equation*}
\left(\int_{B}|T u|^{s} w^{1 / r} \mathrm{~d} x\right)^{1 / s} \leqslant C \operatorname{diam}(B)\left(\int_{\rho B}|u|^{s} w^{1 / r} \mathrm{~d} x\right)^{1 / s} \tag{2.27}
\end{equation*}
$$

If we choose $\alpha=1 / s$ in Theorem 2.6, then $0<\alpha<1$ since $1<s<\infty$. Thus, (2.7) reduces to the following symmetric version:

$$
\begin{equation*}
\left(\int_{B}|T u|^{s} w^{1 / s} \mathrm{~d} x\right)^{1 / s} \leqslant C \operatorname{diam}(B)\left(\int_{\rho B}|u|^{s} w^{1 / s} \mathrm{~d} x\right)^{1 / s} \tag{2.28}
\end{equation*}
$$

Finally, if we choose $\alpha=1$ in Theorem 2.6, we have the following weighted imbedding inequality.

$$
\begin{equation*}
\|T u\|_{s, B, w} \leqslant C \operatorname{diam}(B)\|u\|_{s, \rho B, w} . \tag{2.29}
\end{equation*}
$$

REMARK. Choosing α to be some special values in Theorem 2.21, we shall have some similar results. For example, selecting $\alpha=1$ in Theorem 2.21, we have

$$
\begin{equation*}
\|\mathrm{d}(T u)\|_{s, B, w} \leqslant C_{1}|B|^{(1-\alpha) / s}\|u\|_{s, \sigma B, w} \leqslant C_{2}\|u\|_{s, \sigma B, w} . \tag{2.30}
\end{equation*}
$$

3. Global Weighted Imbedding Inequalities

We need the following properties of the Whitney covers appearing in [8] to prove the global result.

LEMMA 3.1. Each Ω has a modified Whitney cover of cubes $v=\left\{Q_{i}\right\}$ such that

$$
\begin{aligned}
& \bigcup_{i} Q_{i}=\Omega \\
& \sum_{Q \in v} \chi_{\left(\sqrt{\frac{5}{4}}\right) Q} \leqslant N_{\chi_{\Omega}}
\end{aligned}
$$

for all $x \in \mathbf{R}^{n}$ and some $N>1$ and if $Q_{i} \cap Q_{j} \neq \phi$, then there exists a cube R (this cube does not need be a member of v) in $Q_{i} \cap Q_{j}$ such that $Q_{i} \cup Q_{j} \subset N R$. Moreover if Ω is δ-John, then there is a distinguished cube $Q_{0} \in v$ which can be connected with every cube $Q \in v$ by a chain of cubes $Q_{0}, Q_{1}, \ldots, Q_{k}=Q$ from ν and such that $Q \subset \rho Q_{i}, i=0,1,2, \ldots, k$, for some $\rho=\rho(n, \delta)$.

We prove the following global $A_{r}(\Omega)$-weighted imbedding inequality in a bounded domain Ω for A-harmonic tensors.

THEOREM 3.2. Let $u \in L^{s}\left(\Omega, \wedge^{l}\right), l=1,2, \ldots, n, 1<s<\infty$, be an A-harmonic tensor in a bounded domain $\Omega \subset \mathbf{R}^{n}$ and $T: C^{\infty}\left(\Omega, \wedge^{l}\right) \rightarrow$ $C^{\infty}\left(\Omega, \wedge^{l-1}\right)$ be a homotopy operator defined by

$$
T w=\int_{\Omega} \varphi(y) K_{y} w \mathrm{~d} y
$$

Assume that $w \in A_{r}(\Omega)$ for some $r>1$. Then, there exists a constant C, independent of u, such that

$$
\begin{align*}
& \left(\int_{\Omega}|T u|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s} \leqslant C\left(\int_{\Omega}|u|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s}, \tag{3.3}\\
& \left(\int_{w}|\mathrm{~d} T u|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s} \leqslant C\left(\int_{\Omega}|u|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s} \tag{3.4}
\end{align*}
$$

for any real number α with $0<\alpha \leqslant 1$.
Proof. Using (2.7) and Lemma 3.1, we have

$$
\begin{aligned}
\left(\int_{\Omega}|T u|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s} & \leqslant \sum_{Q \in v}\left(C_{1} \operatorname{diam}(Q)\left(\int_{\rho Q}|u|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s}\right) \\
& \leqslant C_{1} \operatorname{diam}(\Omega) \sum_{Q \in v}\left(\int_{\rho Q}|u|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant C_{1} \operatorname{diam}(\Omega) \sum_{Q \in v}\left(\int_{\Omega}|u|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s} \\
& \leqslant C_{3}\left(\int_{\Omega}|u|^{s} w^{\alpha} \mathrm{d} x\right)^{1 / s}
\end{aligned}
$$

which indicates that (3.3) holds. Using (2.22) and Lemma 3.1, we can prove (3.4) similarly. The proof of Theorem 3.2 has been completed.

REMARK. Choosing a to be some special values in (3.3) and (3.4), we shall have some global results similar to the local case.

References

1. Ball, J. M.: 'Convexity conditions and existence theorems in nonlinear elasticity', Arch. Rational Mech. Anal. 63 (1977), 337-403.
2. Ball, J.M. and Murat, F.: ' $W^{1,} p_{\text {-quasi-convexity and variational problems for multiple integrals', }}^{\text {' }}$ J. Funct. Anal. 58 (1984), 225-253.
3. Ding, S.: 'Some examples of conjugate p-harmonic differential forms', J. Math. Anal. Appl. 227 (1998), 251-270.
4. Ding, S.: 'Weighted Caccioppoli-type estimates and weak reverse Hölder inequalities for A-harmonic tensors', Proc. Amer. Math. Soc. 127 (1999), 2657-2664.
5. Garnett, J.B.: Bounded Analytic Functions, Academic Press, New York, 1970.
6. Heinonen, J., Kilpelainen, T. and Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford, 1993.
7. Iwaniec, T. and Lutoborski, A.: 'Integral estimates for null Lagrangians', Arch. Rational Mech. Anal. 125 (1993), 25-79.
8. Nolder, C.A.: 'Hardy-Littlewood theorems for A-harmonic tensors', Illinois J. Math. 43 (1999), 613-631.
9. De Rham, G.: Differential Manifolds, Springer-Verlag, 1980.

[^0]: * Research supported by Seattle University Faculty Fellowships for Summer of 2000.

